
A Modelica Compiler

Steven Xu

School Of Computer Science 
McGill University

March 31, 2003



From last time

n My last presentation has given a brief introduction to  

Modelica, an object-oriented language for physical 

system modeling

n Before presenting today’s topic, let’s have a very brief 

review of modeling in Modelica with a simple circuit



A simple circuit



A simple circuit in Modelica
connector Pin "pin of an electric component"

Voltage v "Potential at the pin";

flow Current i "Current flowing into the 
pin";

end Pin;

n A connection connect(Pin1, Pin2), connects the two 
pins such that they form one node

n This implies two equations:
Pin1.v = Pin2.v

Pin1.i + Pin2.i = 0



A simple circuit in Modelica

n An electrical port 
partial model OnePort “Superclass of Components
with two electrical pins p and n"

Voltage v "Voltage drop between p and n";

Current i "Current flowing from p to n";

Pin p;

Pin n;

equation

v = p.v - n.v;

0 = p.i + n.i;

i = p.i;

end OnePort;



A simple circuit in Modelica

n Resistor
model Resistor "Ideal linear

electrical resistor"

extends OnePort;

parameter Real R(unit=“O”) 

equation

R*i = v; “Ohm’s Law”

end Resistor;

n Capacitor
model Capacitor "Ideal 

electrical Capacitor"

extends OnePort;

parameter real C(unit=“F”) 

equation

C*der(v) = i;

end Capacitor;



A simple circuit in Modelica
model circuit

Resistor R(R=10);

Capacitor C(C=0.01);

VsourceAC AC;

Ground G;

equation

connect(AC.p, R.p);

connect(R.n, C.p);

connect(C.n, AC.n);

connect(AC.n, G.p);

end circuit;



Overview of a Modelica Compiler

Scanner/
Lexical Analyzer Parser

Flatten 
Inheritance

Expand 
‘Connect’

Semantics 
Analysis ……

Solver

A set of implicit, unordered equations

Code generation

A set of causal, 
ordered equations Python 

Code



Possible Steps of the Solver 

n Isolate redundant equations
n Symbolic solution of constant coefficient linear equations
n Detect and correct high index problems
n Causality assignment: Maximum Flow Algorithm
n Sort equations
n Solve linear and non-linear algebraic loops
n Numerical resolution of differential algebraic systems



The Previous Example



Number of equations

n AC Source: 3 + 1
n Resistor: 3 + 1
n Capacitor: 3 + 1
n Ground: 1
n First ‘connect’: 2
n Second ‘connect’: 2
n Third ‘connect’: 2
n Last ‘connect’: 1
n Total number of equations: 20



Equations

n E1: AC.v = AC.p.v – AC.n.v

n E2: AC.p.i + AC.n.i = 0

n E3: AC.i = AC.p.i

n E4: AC.v = sin(t)

n E5: R.v = R.p.v – R.n.v

n E6: R.p.i + R.n.i = 0

n E7: R.i = R.p.i

n E8: R.v = r * R.i

n E9: AC.p.v = R.p.v

n E10: AC.p.i + R.p.i = 0

n E11: C.v = C.p.v –C.n.v

n E12: C.p.i + C.n.i = 0

n E13: C.i = C.p.i

n E14: C.i = C * dev(C.v)

n E15: R.n.v = C.p.v

n E16: R.n.i + C.p.i = 0

n E17: AC.n.v = C.n.v

n E18: AC.n.v = G.p.v

n E19: AC.n.i + C.n.i = 0

n E20: G.p.v = 0



Variables
n V1: AC.v

n V2: AC.p.v

n V3: AC.n.v

n V4: AC.p.i

n V5: AC.n.i

n V6: AC.i

n V7: R.v 

n V8: R.p.v

n V9: R.n.v

n V10: R.p.i

n V11: R.n.i

n V12: R.i

n V13: C.v

n V14: C.p.v

n V15: C.n.v

n V16: C.p.i

n V17: C.n.i

n V18: C.i

n V19: dev(C.v)

n V20: G.p.v



Isolate Redundant Equations

n The ‘connect’ statement in Modelica generates many 
equations in the form of ‘a = b’, or ‘a + b = 0’

n If these equations can be isolated before going to the 
stage causality assignment and sorting, the whole solver 
will be much more efficient, since causality assignment 
and sorting equations are time-consuming



Isolate Redundant Equations

n E1: AC.v = AC.p.v – AC.n.v

n E2: AC.p.i + AC.n.i = 0

n E3: AC.i = AC.p.i

n E4: AC.v = sin(t)

n E5: R.v = R.p.v – R.n.v

n E6: R.p.i + R.n.i = 0

n E7: R.i = R.p.i

n E8: R.v = r * R.i

n E9: AC.p.v = R.p.v

n E10: AC.p.i + R.p.i = 0

n E11: C.v = C.p.v –C.n.v

n E12: C.p.i + C.n.i = 0

n E13: C.i = C.p.i

n E14: C.i = C * dev(C.v)

n E15: R.n.v = C.p.v

n E16: R.n.i + C.p.i = 0

n E17: AC.n.v = C.n.v

n E18: AC.n.v = G.p.v

n E19: AC.n.i + C.n.i = 0

n E20: G.p.v = 0



Isolate Redundant Equations
n E9: AC.p.v = R.p.v

n E15: R.n.v = C.p.v

n E17: AC.n.v = C.n.v

n E18: AC.n.v = G.p.v

n AC.p.v = R.p.v

n R.n.v = C.p.v

n AC.n.v = C.n.v = G.p.v

The LHS can be substituted by the RHS in the remaining 

equation set, e.g. replace AC.p.v with R.p.v, equation 

AC.v = AC.p.v – AC.n.v

becomes

AC.v = R.p.v – G.p.v



Isolate Redundant Equations

n E1: AC.v = AC.p.v – AC.n.v

n E2: AC.p.i + AC.n.i = 0

n E3: AC.i = AC.p.i

n E4: AC.v = sin(t)

n E5: R.v = R.p.v – R.n.v

n E6: R.p.i + R.n.i = 0

n E7: R.i = R.p.i

n E8: R.v = r * R.i

n E9: AC.p.v = R.p.v

n E10: AC.p.i + R.p.i = 0

n E11: C.v = C.p.v –C.n.v

n E12: C.p.i + C.n.i = 0

n E13: C.i = C.p.i

n E14: C.i = C * dev(C.v)

n E15: R.n.v = C.p.v

n E16: R.n.i + C.p.i = 0

n E17: AC.n.v = C.n.v

n E18: AC.n.v = G.p.v

n E19: AC.n.i + C.n.i = 0

n E20: G.p.v = 0



Isolate Redundant Equations

n E2: AC.p.i + AC.n.i = 0

n E3: AC.i = AC.p.I

n E6: R.p.i + R.n.i = 0

n E7: R.i = R.p.I

n E10: AC.p.i + R.p.i = 0

n E12: C.p.i + C.n.i = 0

n E13: C.i = C.p.I

n E16: R.n.i + C.p.i = 0

n E19: AC.n.i + C.n.i = 0

R.i = R.p.i 

= - R.n.i

= C.i

= C.p.i 

= - C.n.i

= - AC.i

= - AC.p.i 

= AC.n.i



Isolate Redundant Equations
v2v1 v3



Reduced Equation Set

Equations
n E1: Ac.v = v1 – v3

n E2: AC.v = sin(t)

n E3: R.v = v1 – v2

n E4: R.v = r * R.i

n E5: C.v = v2 – v3

n E6: R.i = C * dev(C.v)

n E7: v3 = 0

Variables
n V1: v1 (AC.p.v)

n V2: v2 (C.p.v)

n V3: v3 (C.n.v)

n V4: AC.v

n V5: R.v

n V6: C.v

n V7: R.i



Differential Causality

n E6: R.i = C * dev(C.v)

n dev(C.v) = R.i/C

n dev(C.v) = d(C.v)/dt 

n C.v(t) = C.v(t- t)] +   t * R.i(t- t)/C

n Since new values of the LHS (C.v at time step t) are calculated 

based on old values (R.i at time step t-1), the order of 

evaluation of derivative equations does not matter



Reduced Equation Set

Equations
n E1: Ac.v = v1 – v3

n E2: AC.v = sin(t)

n E3: R.v = v1 – v2

n E4: R.v = r * R.i

n E5: C.v = v2 – v3

n E6: v3 = 0

Variables
n V1: v1

n V2: v2

n V3: v3

n V4: AC.v

n V5: R.v

n V6: R.i



Causality Assignment
n To be able to solve for the various unknowns in the equation 

set, we need to have a causal representation

n A matching of equations and variables is required, i.e. identify
which equation can be used to solved which variable

n This can be accomplished by turning equations and variables 
into nodes, and dependencies into edges in a bipartite graph

n The problem of matching equations and variables is thus 
reduced to a maximum cardinality matching problem in the 
bipartite graph



Causality Assignment

n The problem of causality assignment can then be solved by 

turning it into the max flow problem in a one-source, one-sink 

network

n To form the network, a source and a sink need to be added to 

the bipartite graph 



Causality Assignment

E1 E2 E3 E4 E5 E6

V1 V2 V3 V4 V5 V6



Causality Assignment

n Augmenting Path Method (Ford and Fulkerson)

n Begin with zero flow on all edges

n Find an augmenting path p for the current flow

n Increase the value of the flow by pushing res(p) units of flow along 

p, where res(p) = cap(p) – f(p)

n Repeat until a flow without an augmenting path is found



Causality Assignment

E1 E2 E3 E4 E5 E6

V1 V2 V3 V4 V5 V6

Q

S



Causality Assignment

Result:  the correspondence between a variable and the 
equation used to solve it

n E1: v1 = Ac.v + v3

n E2: AC.v = sin(t)

n E3: R.v = v1 – v2

n E4: i = R.v/r

n E5: v2 = C.v + v3

n E6: v3 = 0



Sorting Equations
n The causality assignment gives pairing between equations and 

variables, but the equations are still in their original sequence

n The objective is that equations must be sorted in the reversed 
order of their dependencies, i.e. if to calculate a variable is 
necessary to know the value of another, then the other has to 
be calculated first

n Algorithm for sorting equations: build a dependency graph and 
perform a Depth First Search with post-order numbering on this 
graph



Sorting Equations

dfsCounter=0

for all v in V do

visited[v]=false

dfsNr[v]=0

end for

for all v in V

if not visited[v] then

DFS(v)

end if

end for

DFS(v):

if not visited[v] then

visited[v]=true

for all children w of v

DFS(w)

end for 

dfsCounter++

dfsNr[v]=dfsCounter

end if

Algorithm: DFS sorting



Sorting Equations

V6

V2

V5

V1

V4 V32 1

3

6

5

4

nE6: v3 = 0

nE2: AC.v = sin(t)

nE1: v1 = Ac.v + v3

nE5: v2 = C.v + v3

nE3: R.v = v1 – v2

nE4: i = R.v / r



Detecting Algebraic Loops

n In some cases, sorting is not possible due to 

dependency cycle, or algebraic loop, e.g 

z = 5

x – y = -6

x + y = -z

n Tarjan’s O(n+m) (n is the number of vertices, m is the 

number of graph edges) loop detection algorithm 

provides an efficient solution



Detecting Algebraic Loops

Tarjan’s loop detection algorithm

n Complete DFS on G

n Reverse edges in the annotated G yielding G’

n DFS on G’ starting with the highest numbered v. The set 
of vertices in each DFS tree is a strong component. 
Remove the strong component form G’ and repeat until 
G’ has been removed completely. If there exists no loops, 
the sets of vertices found will be singletons



Solving Algebraic Loops
n Linear Algebraic Loops

n An implicit, linear set of n equations in n unknowns may 
be solved using Cramer’s Rule 

n e.g, the equation set
z = 5

x – y = -6
x + y = -z

has the solution

x = = y = =

-6  -1

-z   1

1  -1

1   1

-6 - z
2

1  -6

1  -z

1  -1

1   1

-6 - z
2

;



Solving Algebraic Loops

n EcosimPro employs the following numerical procedure 
to calculate the values of the variables in a non-linear 
algebraic loop
n Assuming that the values of one or more variables are 

known
n Obtain the value of other variables
n Obtain the differences between the calculated variables 

and the expected values
n Iterate until the differences cancel, i.e. convergence



Solving Algebraic Loops

n For example, to solve this non-linear algebraic loop
x + y = 2

x * y = 1

n Assuming x is known
n y = 2 – x

n Res = x * y – 1

n Iterate until convergence, ie. res is less 
than the tolerance



Code Generation

n Up to this point, all equations are now in explicit form 
and ordered in a way such that unknowns can be 
computed sequentially

n With this set explicit equations, we can now generate 
code for simulation 



References

[1] Overview article of Modelica. Available at: 
http://www.modelica.org/

[2] Modelica Tutorial, version 1.4. Available at: 
http://www.modelica.org/documents.shtml

[3] EcosimPro Mathematical Algorithms
[4] Dymola User Manual. 
[5] Introduction to Physical Modeling with Modelica.   Michael 

Tiller. 2001
[6] Some Issues Concerning Computer Algebra in AToM3


