
Software Process Modeling

Sadaf Mustafiz
School of Computer Science

McGill University

Winter 2003

2

Outline (1)
The Need for a Defined Software Process
Objectives of Software Process Modeling
Current Software Process Models

Waterfall Model
Spiral Model
Incremental Development Model
Shortcomings of Current Models
Causes of Current Model Problems

Process Modeling Considerations

3

Outline (2)

Entity Process Model
Differences of EPM and WM
Stability of EPMs
Entities and Software Process Entities
Producing Software Process Models
Example EPM
Scheduling Considerations

4

The Need for a Defined
Software Process

The software process is the technical and
management framework established for
applying tools, methods, and people to the
software task.

A thoughtfully defined and approved process
can be a great help for the software
professionals to do a consistently
professional job.

5

Objectives
to assess and analyse the as-is process
to design the to-be process
to forecast process trajectories for a
better project control
to simulate outcomes under different
what-if conditions
without affecting the actual environment

6

Process Models
Represent the way the work is actually
(or is to be) performed.
Provide a flexible and easily
understandable, yet powerful,
framework for representing and
enhancing the process.
Be refinable to whatever level of detail
is needed.

7

Current Software Process Models

Waterfall Model
Spiral Model
Incremental Development Model
Entity Model
…

8

Waterfall Model
(the traditional view)
First described in 1970’s for aerospace/Defense projects.

9

Shortcomings of the Waterfall
Model

It does not adequately address the
pervasiveness of changes in software
development.
It unrealistically implies a relatively uniform
and orderly sequence of development
activities.
It does not easily accommodate such recent
developments as rapid prototyping or
advanced languages.
It provides insufficient detail to support
process optimization.

10

The Reality…

11

Spiral Model (1)

This is a refinement of the traditional
waterfall, explicitly recognizing that
development cycles. The spiral
incorporates risk analysis into the
process, and allows developers to stop
the process as well as clients,
depending on expected returns from
new requirements.

12

Spiral Model (2)
Described by Barry Boehm as a metamodel…

13

Incremental Development Model
Each release is a mini-waterfall

14

Causes of Current Model
Problems

The fundamental problem with current
software process models is that they do
not accurately represent the behavioural
(or timing) aspects of what is really
done.
Traditional process models are
extremely sensitive to task sequence;
consequently, simple adjustments can
require a complete restructuring of the
model.

15

Process Modeling Considerations
"What is the right way to model the process?"
but "What is the most appropriate way to
model this process for this purpose?“
Most efforts have focused on the functional,
or task-oriented, aspects of processes.
The Entity Process Model proposes an entity The Entity Process Model proposes an entity
orientation to behavioural modeling.orientation to behavioural modeling.

16

Entity Process Model
Considers basing process models on
entities. Here, one deals with real
entities and the actions performed on
them. Each entity is a real object that
exists and has an extended lifetime.
Examples: the requirements, the
finished program, the program
documentation, or the design.

17

Differences of EPM and WM
The traditional waterfall model deals with
tasks such as producing the requirements.
This task is then presumed completed before
the next one (design) starts.
In reality, the requirements entity must
survive throughout the process. While it
undergoes many transformations, there is a
real requirements entity that should be
available at all later times in the process.
The same is true of the design, the
implementation, and the test suite.

18

The Stability of Entity
Process Models (EPMs)
The reasons that EPMs provide a useful
representation of a software process are:

EPMs deal with real objects (entities)
that persist.
Each entity is considered by itself and is
viewed as having a defined sequence of
states.

19

The Stability of EPMs (2)
State transitions result from well defined
causes, although they may depend on the
states of other entities as well as process
events and conditions.
As long as the relative sequential
relationships of these transitions are retained
within each entity stream and as long as any
prerequisites and dependencies between
entities are maintained, the timing within the
various entity streams is not material.

20

Entities
An entity must:

Exist in the real world and not merely
within the model or process.
Be identifiable and uniquely named.
Be transformed by the process through
a defined set of states.

21

Software Process Entities
Some obvious entities are:

Deliverable code
Users’ installation and operation manuals

Some more entities are (debatable):
Requirements documents
Design
Test cases and procedures

22

Producing Entity Process
Models

Identify the process entities and their states.
Define the triggers that cause the transitions
between these states.
Complete the process model without
resource constraints — an unconstrained
process model (UPM).
Impose the appropriate limitations to produce
a final constrained process model (CPM).

23

Example EPM (1)
Modeled using a commercially available
software system called STATEMATE.
Focuses on behavioural modeling
perspective
Approach to behavioural modeling
utilizes statecharts

24

Example EPM (2)
Considering the activities occurring between the
time when
1. detailed design for the module has been

developed, and
2. the module has successfully passed unit

testing.

Three entities of interest:
1. Module code
2. Unit tests for the module
3. Test execution and analysis results

25

Example EPM (3)

Example Time Line for Module Code Entity

Passive
State

Active
State

• Entities remain for a non-zero time in each state.
• Transitions take negligible time.
• In the life span of an entity, it must always be in some state.

26

Example EPM (4)

Statechart depicting an entity process
modeling view of the example process.

The boxes in the diagram represent
states, while the lines represent
transitions between states.

27

Example EPM (5)
Module Code Entity

28

Example EPM (6)
Module Unit Tests Entity

29

Example EPM (7)
Test Execution and Analysis Results Entity

30

Example EPM (8)
States can have orthogonal components,
separated by dashed lines. These orthogonal
components represent parallelism
(concurrency); for example, the module code,
tests, and test execution report all exist
concurrently, as illustrated in the upper left
quadrant (labelled module_code), lower left
quadrant (labelled module_tests), and upper
right quadrant (labelled test_exec_report) of the
diagram, respectively.

31

Example EPM (9)
Because STATEMATE does not offer
an “entity” construct, the entities
themselves have to be represented as
high-level orthogonal state components,
as shown by the major quadrants in the
figure. At all lower levels, states in the
statechart do indeed depict the various
states of these entities.

32

Basic EPM Example (10)

33

Example EPM (11)
When the overall process is in a state (such
as the large outer state labelled sw_process), it
must also be in a substate in each orthogonal
component.
Components have been included in the lower
right quadrant for upstream entities and
downstream entities. These are simply
placeholders to illustrate where the rest of the
software process would be depicted, and
would include states for the entities
requirements, designs, system builds,
integration tests, etc.

34

Example with Feedback (1)
Module Code Entity

35

Example with Feedback (2)
Module Unit Tests Entity

36

Example with Feedback (3)
Test Execution and Analysis Results Entity

37

Further Refinement
EPM Example – Developing_Code Details

38

Scheduling Considerations
Entity process models can be used for
schedule planning and analysis.
The example EPM developed is called
unconstrained because it does not include
any consideration of resource constraints in
performing tasks and making transitions
between states.
The EPM can be used to derive an
unconstrained process model (UPM), which
is a schedule for the unconstrained case.

39

The Unconstrained Process
Model (UPM)

•These tasks correspond to the active
states in the statechart model.

•The basic plan forecasts that after
initial development of code and tests,
test execution will uncover errors
calling for the rework of both code and
tests at half their initial effort level.

• The second round of testing will
uncover more errors, but only in the
code, requiring one-quarter the initial
effort to correct.

•The tests will then be passed on the
third round. It has been assumed that
each of these tasks is a one-person
task that cannot be distributed among
multiple workers.

40

Example UPM

41

The Constrained Process
Model (1)

Real software organizations have limited
resources, some tasks may have to wait for
personnel to become available to accomplish
them.
The CPM is produced by adjusting task timing
to obtain the overall results desired, subject
to the resource constraints.
A typical objective would be to complete the
process in the shortest time.

42

The Constrained Process
Model (2)

The UPM revealed that the process
could be completed in 29 hours, but
required two workers during 12 of those
hours.
What happens when only one worker is
available?
The shortest possible time with this
resource constraint is 41 hours.

43

Example CPM

44

Schedule Management (1)
Software Process Models can be valuable tools
for schedule management.
From the UPM (slide 41), it can be seen that
there is slack time for initial test development: it
can begin any time between time 0 and 4 without
delaying completion of the process.
On the other hand, initial code development is on
the critical path; if any way could be found to
speed up that task, overall completion would
occur sooner.
These charts also indicate that the addition of a
second worker at certain points could speed up
completion.

45

Schedule Management (2)
The models are also useful during process
execution.
In the occurrence of a crisis delaying completion
of a key task, the models allow management to
determine if this task is on the critical path. If it is,
then the completion schedule is threatened, and
management can use the models to assess the
available corrective actions.
By examining the models, it becomes apparent
whether added resources could help and where
they should be applied to rebalance the
schedule.

46

Conclusions (1)
The most attractive feature of EPMs is the new
forces they generate:

The prime entities of the software process are
seen as persistent objects.
A focus on states facilitates the tracking of
100% completed items rather than vague
partial task completions.
The UPM/CPM duality assists in adjusting for
crises without bypassing essential elements
of the process.

47

Conclusions (2)
The use of the UPM/CPM pair simplifies initial
scheduling and planning and permits simple
adjustments to conform to new demands and
available resources.
The EPM models focus on the dynamic
behaviour of a process and its impacts on the
relevant entities.
The EPMs, based on statecharts, are formal
and enactable — in that we are able to run
interactive, animated simulations of our EPMs
with STATEMATE, as well as perform
automated tests and analyses.

48

References (1)
1. Watts S. Humphrey , Marc I. Kellner, Software

process modeling: principles of entity process
models, Proceedings of the 11th international
conference on Software engineering, p.331-342,
May 1989, Pittsburgh, Pennsylvania, United States
http://portal.acm.org/citation.cfm?doid=74587.74631

2. M. I. Kellner, Representation formalisms for
software process modelling, Proceedings of the 4th
international software process workshop on
Representing and enacting the software process,
p.93-96, April 1988, Devon, United Kingdom
http://portal.acm.org/citation.cfm?doid=75111.751
25

49

References (2)
3. “Hybrid Simulation Modelling of the Software Process”

Paolo Donzelli, Giuseppe Iazeolla, Laboratory for Computer
Science, University of Rome
http://www.prosim.pdx.edu/prosim2000/paper/ProSimE
A23.pdf

4. Software Process.
http://www.cs.unc.edu/~stotts/COMP145/KMSnotes/seprocess.
html

5. Software Process Models.
http://www.cc.gatech.edu/computing/SW_Eng/people/Faculty/C
olin.Potts/Courses/3302/1-08-mgt/sld001.htm

http://www.prosim.pdx.edu/prosim2000/paper/ProSimEA23.pdf
http://www.prosim.pdx.edu/prosim2000/paper/ProSimEA23.pdf
http://www.prosim.pdx.edu/prosim2000/paper/ProSimEA23.pdf
http://www.cs.unc.edu/~stotts/COMP145/KMSnotes/seprocess.html
http://www.cs.unc.edu/~stotts/COMP145/KMSnotes/seprocess.html
http://www.cs.unc.edu/~stotts/COMP145/KMSnotes/seprocess.html
http://www.cs.unc.edu/~stotts/COMP145/KMSnotes/seprocess.html
http://www.cc.gatech.edu/computing/SW_Eng/people/Faculty/Colin.Potts/Courses/3302/1-08-mgt/sld001.htm
http://www.cc.gatech.edu/computing/SW_Eng/people/Faculty/Colin.Potts/Courses/3302/1-08-mgt/sld001.htm
http://www.cc.gatech.edu/computing/SW_Eng/people/Faculty/Colin.Potts/Courses/3302/1-08-mgt/sld001.htm
http://www.cc.gatech.edu/computing/SW_Eng/people/Faculty/Colin.Potts/Courses/3302/1-08-mgt/sld001.htm

	Software Process Modeling
	Outline (1)
	Outline (2)
	The Need for a Defined Software Process
	Objectives
	Process Models
	Current Software Process Models
	Waterfall Model (the traditional view)
	Shortcomings of the Waterfall Model
	The Reality…
	Spiral Model (1)
	Spiral Model (2)
	Incremental Development Model
	Causes of Current Model Problems
	Process Modeling Considerations
	Entity Process Model
	Differences of EPM and WM
	The Stability of Entity Process Models (EPMs)
	The Stability of EPMs (2)
	Entities
	Software Process Entities
	Producing Entity Process Models
	Example EPM (1)
	Example EPM (2)
	Example EPM (3)
	Example EPM (4)
	Example EPM (5)
	Example EPM (6)
	Example EPM (7)
	Example EPM (8)
	Example EPM (9)
	Basic EPM Example (10)
	Example EPM (11)
	Example with Feedback (1)
	Example with Feedback (2)
	Example with Feedback (3)
	Further Refinement
	Scheduling Considerations
	The Unconstrained Process Model (UPM)
	Example UPM
	The Constrained Process Model (1)
	The Constrained Process Model (2)
	Example CPM
	Schedule Management (1)
	Schedule Management (2)
	Conclusions (1)
	Conclusions (2)
	References (1)
	References (2)

