
Implementing the Model Communication
DEVS and Statechart

Thomas Feng

April 2, 2003

Email: thomas@email.com.cn

Homepage: http://moncs.cs.mcgill.ca/people/tfeng/

mailto:thomas@email.com.cn
http://moncs.cs.mcgill.ca/people/tfeng/

I Overview

• A communication protocol

• Sequence diagram to illustrate the scheme

• A Non-realtime DEVS implementation

• A realtime DEVS implementation

• A realtime Statechart implementation

• A Non-realtime Statechart implementation

The following process is applied to each model implementation:
design, coding, simulation, automatic validation (according to a rule
file).

1

I COMMUNICATION PROTOCOL

• There are 5 clients and 2 chat rooms in the system. The clients
must be connected to the chat rooms before they can randomly send
messages.

• Initially, the clients are not connected. They try to connect to random
chat rooms every 1 to 3 seconds (uniformly distributed).

• A chat room can accept at most 3 clients. It accepts a connection
request iff its capacity is not exceeded.

• When connected, a client sends random messages to the chat room
every 1 to 5 seconds (uniformly distributed). It takes 1 second for the
chat room to process the message and broadcast it to all the other
clients connecting to it. (The sender will not receive this message.)

• The clients immediately receive the broadcast messages.

2

I Chat Sequence Diagram (1)

CLIENT MANAGER CHATROOM

alt
accept

alt
reject

req u es t
req u es t

accep tan ce
accep tan ce

rejectio n
rejectio n

ackn o wled g e

3

I Chat Sequence Diagram (2)

CLIENT MANAGER CHATROOM

m essage
m essage

CLIENT CLIENT

m essage
m essage

m essage

1sec

4

I DEVS Model Design

• CLIENT. An atomic DEVS repeatedly requesting for a connection
every 1 to 3 seconds (uniformly distributed). Once connected, it
repeatedly sends random messages every 1 to 5 seconds.

• CHATROOM. An atomic DEVS passively waiting for connection
requests and messages. It accepts a connection request from a client
iff it has less than 3 clients at that time.

• MANAGER. An atomic DEVS maintaining all the connections.
CHATROOMs and CLIENTs are connected to only one MANAGER,
which relays all the messages. When a CHATROOM broadcasts
a message, the MANAGER sends the message to all the clients
connected to this CHATROOM, except the sender.

• CHAT. A coupled DEVS hosting all these components.

5

I DEVS Model: CLIENT (1)

NOCHAT CONNEC-
TING

CONNEC-
TED

uniform (T C_MIN, T C_MAX)
uniform (SM_MIN, SM_MAX)

ac c inrejin

m sgin

S = {NC, CNTING, CNTED}
δint(NC) = CNTING

δint(CNTING) = CNTING

δint(CNTED) = CNTED

ta(NC) = uniform(TC MIN, TC MAX)

ta(CNTING) = ∞
ta(CNTED) = uniform(SM MIN, SM MAX)

X = {accin, rejin, msgin}
Y = {reqout, msgout}

6

I DEVS Model: CLIENT (2)

δext((CNTING,e),accin) = CNTED

δext((CNTING,e),rejin) = NC

δext((CNTED,e),msgin) = CNTED

λ(CNTED) = msgout

λ(NC) = reqout

7

I DEVS Model: CHATROOM (1)

NORMAL

ACCRPT (1)
reqin

SEND

msgin
m sgin

ACCRPT (2)

reqin

ta=0

ta=0

ta=0

REJECT (1)
reqin

ta=0

REJECT (2)

ta=0

reqin
Note:
 There're two req in external transitions for
NORMAL state and SEND state because the
other states, messages, mcnt and clientnum,
are not shown for simplicity. The model is
deterministic.

S = {A1,R1,NORM,SEND,A2,R2}×messages×mcnt×clientnum

δint((A1/R1, . . .)) = (NORM, . . .)

δint((A2/R2, . . .)) = (SEND, . . .)

δint((SEND,messages,mcnt, . . .)) = (SEND,messages,mcnt+1, . . .)

if mcnt<len(messages)-1
(NORM,[],0, . . .) otherwise

8

I DEVS Model: CHATROOM (2)

ta((A1/R1, . . .)) = 0

ta((A2/R2, . . .)) = 0

ta((SEND,messages,mcnt, . . .)) = (messages[mcnt].trec+1)-tcur

if mcnt<len(messages)
0 otherwise

ta((NORM, . . .)) = ∞
X = {reqin, msgin}
Y = {accout, rejout, msgout}

δext(((NORM,clientnum, . . .),e),reqin) = (A1,clientnum+1 . . .) if clientnum<3
(R1,clientnum . . .) otherwise

δext(((SEND,clientnum, . . .),e),reqin) = (A2,clientnum+1 . . .) if clientnum<3
(R2,clientnum . . .) otherwise

δext(((NORM,messages, . . .),e),msgin) = (SEND,[msgin.msg], . . .)

δext(((SEND,messages, . . .),e),msgin) = (SEND,messages+[msgin.msg], . . .)

λ((SEND, . . .)) = msgout

λ((A1/A2, . . .)) = accout

λ((R1/R2, . . .)) = rejout

9

I DEVS Model: MANAGER

S = cons×acts

λ((cons,acts)) = carry out the first action if len(acts)>0
δint((cons,acts)) = (cons,acts-[acts[0]])

ta((cons,acts)) = 0 if len(acts)>0
∞ otherwise

X = {reqin, rmsgin, cmsgin, accin, rejin}
Y = {reqout, rmsgout, cmsgout, accout, rejout}

δext(((cons,acts),e),reqin) = (cons, acts+[send reqout to reqin.roomno])

δext(((cons,acts),e),accin) = (cons+[accin.roomno,accin.clientno],

acts+[send accout to client accin.clientno])

δext(((cons,acts),e),rejin) = (cons, acts+[send rejout to client accin.clientno])

δext(((cons,acts),e),cmsgin) = (cons, acts+[send rmsgout to chat room])

δext(((cons,acts),e),rmsgin) = (cons, acts+[send cmsgout to client x for any

x∈cons[rmsgin.roomno] and x6=rmsgin.sender])

10

I DEVS Model: CHAT

MANAGER

CHATROOM 1
1 2 3 4 5

1' 2' 3' 4' 5'

CHATROOM 2

a' b' c' d' e'

CLIENT 1

a b c d e

1. msgout
2. msgin
3. reqin
4. accout
5. rejout

1'. rmsgin
2'. rmsgout
3'. reqout
4'. accin
5'. rejin

a. msgout
b. msgin
c. reqout
d. accin
e. rejin

a'. cmsgin
b'. cmsgout
c'. reqin
d'. accout
e'. rejout

11

I Validating the Execution (1)

To validate the execution trace, we identify the following rules,
formally convert them into regular expressions, and use automatic tools
to validate the output.

1. When a client sends a connection request to a chat room, the chat
room immediately responses by outputing a message.

2. On receiving a connection request, the chat room immediately makes
a decision whether to accept the client or reject it.

3. When a chat room accepts a client, the client immediately receives
the acceptance and dumps to the output.

4. When a chat room rejects a client, the client also immediately dumps
the rejection.

12

I Validating the Execution (2)

5. When a client sends a message, the chat room immediately receives
it and output the receipt.

6. Exactly 1 second after a chat room receives a message, it broadcasts
it. (This rule is not valid for the last second before end of the
execution.)

7. The sender cannot receive its own message 1 second after it sends it.

13

I Limitations

• The time interval between trying connections and sending messages
cannot be checked.

• The receiver of the broadcast cannot be checked, since this means
the checker must know the run-time connection of each chat room.

• Messages are identified by time and content, not instance identity.
This may cause trouble in rare cases.

• Rule checking is literal, which is not appropriate in realtime
applications.

• And more . . .

14

I The Format of Rules

Each rule may consist of 4 parts in separate lines:

1. Pre-condition. The regular expression pattern that must appear
somewhere in the output to enable the rule.

2. Post-condition. The regular expression pattern that must be found
somewhere in the output to make the rule satisfied.

3. Rule validation (optional). The condition that must be satisfied to
make the rule valid.

4. Counter (optional). The property that makes the rule a counter-rule.

15

I Examples

The rule to validate that the chat room receives the
connection request at the same time a client sends it:

* * * * * * * * * * CLOCK: (\d+\.{0,1}\d*)\W*\n\n\(Client (\d+\.{0,1}
\d*)\) A connection request is sent to chat room (\d+\.{0,1}\d*)\.\n

* * * * * * * * * * CLOCK: ([(\1)])\W*\n\n\(Chat Room [(\3)]\) Received
connection request from client [(\2)]\.\n

The rule to validate that after 1 second from a chat room receives a
message, it broadcasts it:

* * * * * * * * * * CLOCK: (\d+\.{0,1}\d*)\W*\n\n\(Chat Room
(\d+\.{0,1}\d*)\) Received message "(.*?)" from client (\d+\.{0,1}\d*)\.\n

* * * * * * * * * * CLOCK: [(\1+1)]\W*\n\n\(Chat Room [(\2)]\)
Sent message "[(\3)]" to all connected clients except client [(\4)]\.\n

[(\1+1)]<10

16

I Executing the DEVS Model

The Chat.py is a DEVS Model (both realtime and non-realtime).
It first runs the model for 10 (virtual or real) seconds, and then invokes
the rule checker to check the output according to the file Chat.rules.

Non-realtime version (PythonDEVS):

python Chat.py

Realtime version (RealtimeDEVS):

python Chat.py -realtime

Do expect to find a failure in the second run, because the rules
cannot check realtime applications.

17

I Statechart Design

For comparison, the same protocol is simulated by statechart
models, which run in SVM (Statechart Virtual Machine).

Conventions:

• Besides all the semantic elements in original statechart formalism,
SVM also supports model initializer, finalizer and parameterized model
importation. Some of these parts are not shown in the following
statecharts, though they are necessary for the model execution.

• Macros can be defined in a model, and redefined by the reusing model
or from the command line. Macros are placed in square brackets.
They can carry parameters in parentheses. In the following charts,
macros are shown in uppercase, bold Arial font to distinguish from
guards and lists.

18

http://msdl.cs.mcgill.ca/people/tfeng/?research=svm

I Statechart: CLIENT

CLIENT

NOCHAT

CONNECTED

Ac c ept [SELFID] /
[DUMP("...")]

After(uniform ([REQUEST_MIN], [REQUEST_MAX])) /
Room No[SELFID]=randint(0, 1),

PendingReques t[Room No[SELFID]].append([SELFID]),
[EVENT("Request %d" % RoomNo[SELFID])]

Rejec t [SELFID] /
[DUMP("...")]

After(uniform ([SEND_MIN], [SEND_MAX])) /
PendingSend[Room No[SELFID]].append([[SELFID], m sg,
[CURRENT]]), [EVENT("Send %d" % RoomNo[SELFID])]

Broadc as t [SELFID] /
[DUMP("...")]

19

I Statechart: CHATROOM

CHAT ROOM

NORMAL WAITING

Reques t [SELFID] [len(Clients [SELFID])< [MAXCLIENT]] / ClientID=PendingReques t[SELFID][0],
Clients [SELFID].append(ClientID), del PendingReques t[SELFID][0], [EVENT("Accept %d" % ClientID)]

ROOT

BROADCAST

SENDING

En ter :
 set all the queues

to em pty

Reques t [SELFID] [len(Clients [SELFID])>= [MAXCLIENT]] /
ClientID=PendingReques t[SELFID][0],

del PendingReques t[SELFID][0], [EVENT("Reject %d" % ClientID)]

Send [SELFID] /
[DUMP("...")]

H

H* Send [SELFID] /
[DUMP("...")]

After(subtrac t(PendingSend[SELFID][0][2]+1, [CURRENT])) /
Rec eiver[SELFID]=0, [EVENT("Send Loop [SELFID]")]

Send Loop [SELFID] [Rec eiver[SELFID]<len(Clients [SELFID]) and
Clients [SELFID][Rec eiver[SELFID]]!=PendingSend[SELFID][0][0]] /

Rec eiver[SELFID]+=1, [EVENT("Send Loop [SELFID]")]
[EVENT("Broadcast %d"%Clients[SELFID][Receiver[SELFID]])]

Send Loop [SELFID] [Rec eiver[SELFID]= =
len(Clients [SELFID]) and len(PendingSend[SELFID])>1] /

del PendingSend[SELFID][0], Rec eiver[SELFID]=0

Send Loop [SELFID]
[Rec eiver[SELFID]= =

len(Clients [SELFID]) and
len(PendingSend[SELFID])

= = 1] / del
PendingSend[SELFID][0],

Rec eiver[SELFID]=0

20

I Statechart: CHAT

CHAT

After([MAX_TIME]) /
[EVENT("Finished")]RUNNING

CLIENT(n)

IMP O RT
CLIENT

P ARAMETERS

(4 c lients)

CHATROOM(n)

IMP O RT
 CHATROOM

P ARAMETERS

(1 c hatroom)

En ter :
 s tarttim e=0
 output=""

FINISHED

En ter :
 c hec k the
output ac c ording
to the rules

21

I Statechart: EXPERIMENT

EXPERIMENT

CHAT WAIT

Start

TEST

Finished /
[EVENT("Check Repeat")]

Chec k Repeat
[repeat_tim e< [REPEAT]] /

repeat_tim e+=1

END

Chec k Repeat
[repeat_tim e== [REPEAT]]

IMP O RT
CHAT

P ARAMETERS

Run the model (do expect to get a failure):

./svm Chat/Experiment.des

22

I Non-realtime Statechart (1)

The fourth model described below is a non-realtime
statechart implementation of the same protocol. It differs from the
realtime version in:

• Instead of scheduling realtime events (after a certain time), the
CLIENT and CHATROOM models schedule virtual time events, and
wait for the “Time Advance” event from the CHAT model.

• CLOCK is added to the CHAT model as another orthogonal
component. The “Check Time” event is triggered whenever the
other threads are all waiting. Then, if it is not time to finish, the
CLOCK advances the time by sending a “Time Advance” event. It
must also set the current time to the minimum scheduled time.

23

I Non-realtime Statechart (2)

• All the other components receive the “Time Advance” event.
The first thing they must do is to compare their last scheduled time
with the current time, to determine if it is their turn.

• When the two times coincide for a transition, it is fired. It may
schedule another event.

• The EXPERIMENT model is exactly the same, except that it loads
another CHAT model.

Run the model:

./svm Chat/Experiment.des "TYPE=nrt"

24

I Summary (1)

Communication modelling with DEVS:

• A manager is set up to manage all the connections and relay all the
messages between the sender and receiver.

• A message must carry the receiver’s ID (if it is not broadcast).

• To establish the connections, the manager must know the format of
some of the messages (i.e., the acceptance and rejection messages).

25

I Summary (2)

Communication modelling with Statechart:

• There is no manager. The clients and chat rooms themselves record
their own connections.

• Messages are sent as events, which are global. So the receiver’s IDs
must be attached to the events.

• It is necessary for a non-realtime application to explicitly model
the event scheduling (with a CLOCK orthogonal component in this
example).

Validation based on rules is very strict, but it is applicable only to
non-realtime applications.

26

I So much for today...

Thank you for your attendance!

Any problems or concerns, please email: thomas@email.com.cn

27

mailto:thomas@email.com.cn

