Meta Modeling: Re-architecting the UML Infrastructure

Presented By Aaron Shui

Overview

- Current UML Metamodel
- 3 Problems and Proposed Solutions w/ UML Metamodel
- Combining the Proposals

Major Goals of UML 2.0

- Provide an extensible framework.
- Customized abstraction mapping to implementation concepts.
 - E.g. modify concept of class
- No consensus of how to accomplish this.

Four Level Metamodeling Architecture

Problems w/ Architecture

- The "Instance-Of" relationship is:
 - onot well defined.
 - not the same between levels.
 - onot the same within a level.

Strict Metamodeling

- Improves definition of "Instance-Of" relationships with the constraints:
- "Instance-Of" relationships only allowed between levels, not within a level.
- 2. Elements must be an "Instance-Of" exactly one element from the level immediately higher.

Problem I: Instance-Of Types

Does not recognize and support the two fundamental "Instance-Of" relationship types:

- Logical Classification
- Physical Classification

Logical Classification

- Defines a model element's domain type and content.
- E.g. 2001: A Space Odyssey is a Video.
- Dominant classification from modelers point of view.

Physical Classification

- Defines structure and presentation of a model element.
- E.g. 2001: A Space Odyssey is an Object
- Dominant classification from tool builder's point of view.

Strict Metamodeling Violation

 Integrating both logical and physical into linear hierarchy violates strict metamodeling.

Proposal I: Use Two Metadimensions

- Explicitly define "Instance-Of" relationships of type logical or physical.
- Split linear hierarchy into logical and physical metadimensions.

Physical Metadimension

- Video has attributes and associations.
- 2001 has slots and links.
- No logical relationship shown.
- Strict metamodeling not violated.

Logical Metadimension

Outcome: Two Dimensional Framework

- Logical and physical dimensions are:
 - Orthogonal.
 - Have equal importance
- Strict Metamodeling achieved.

Problem II: More Logical Metalevels

- Modelers want more logical metalevels.
 - E.g. 2001 is a template for different copies.
- Need corresponding element in P₁.
- Redundant physical classifiers.

Proposal II: Unify Modeling Elements

- Solution: simplify P₁ by merging all its elements.
- Tradeoff: can not query sets of element types as efficiently.

Outcome: Unified Structural Element

- P₀ elements are physical instances of Structural Element.
- Number of logical metalevels in P₀ irrelevant.

Problem III: Shallow Instantiation

- Traditional instantiation:
 - can only specify properties of direct instances.
 - can not specify properties of instances of its instances.
- Can not enforce requirements on indirect instances.

Proposal III: Deep Instantiation

- Assign potency value to model elements representing number of instantiations allowed.
- Decrement potency with every instantiations.
- E.g. traditional class: potency = 1
- E.g. traditional object: potency = 0

Outcome: Potency

- If more logical levels required then higher potency.
- Information can transcend more than two levels.

Combine Proposals

- Put P_1 above all logical levels in P_0 .
- Recall:
 - One unified structural element for all logical levels.
 - Deep instantiation: information can be defined in a higher level.

Combine Proposals: Outcome

- Logical and Physical re-aligned.
- Proposal I unnecessary?

Conclusion

- 3 Proposals are complementary but independent.
- Help make the UML Metamodel extensible for both tool builders and users.

Questions?

References

- C. Atkinson, T. Kühne. Rearchitecting the UML Infrastructure, ACM Journal: Transactions on Modeling and Computer Simulation, Vol. 12, No. 4, 2002.
- C. Atkinson, T. Kühne. The Essence of Multi-Level Metamodeling. Proceedings of the 4th International Conference on the Unified Modeling Language, 2001.
- J. Alvarez, A. Evans, P. Sammut. Mapping Between Levels in the Metamodel Architecture. Proceedings of the Fourth International Conference on the Unified Modeling Language, 2001.
- OMG. UMLTM Resource Page, www.omg.org/uml.