The Play-In/Play-Out Approach

Riandi Wiguna
rian.wiguna@mail.mcgill.ca
School of Computer Science
McGill University
March 8, 2004

"You better hit bull's eye, the kid don't play."
-Vanilla Ice, "Ice, Ice, Baby"

Overview

- 1.Intro to Play-In/Play-Out
- 2.LSCs (Live Sequence Charts)
- 3.Play-In
- 4.Play-Out
- 5.Example: Simple Microwave
- 6.Play-Engine Components
- 7.Play-Engine Functions
- 8. Advanced Topics
- 9. Conclusions & Questions

Intro to Play-In/Play-Out

The Play-In/Play-Out Approach is a way to easily generate and test LSCs (Live Sequence Charts). LSCs model all desired system reactions, providing a complete design for the system.

The basic idea is to feed both input and desired output into a "Play-Engine" which generates LSCs automatically. We then run the system through the Play-Engine, making sure the system satisfies our requirements.

Intro to Play-In/Play-Out

A step-by-step view of the Approach:

- 1. Determine system requirements
- 2. Build system GUI (graphical user interface)
- 3. Play-In scenarios into GUI / Play-Engine makes LSCs
- 4.Play-Out system through GUI, testing it / Play-Engine displays system's fidelity to LSCs throughout run

Both designers and end-users can participate in the software design process through Play-In/Play-

Out.

Intro to Play-In/Play-Out

This presentation is based off "Specifying and Executing Behavioral Requirements: The Play-In/Play-Out Approach" by David Harel and Rami Marelly, with additional information from:

- 1. "Synthesizing State-Based Object Systems from LSC Specifications" by David Harel and Hillel Kugler
- 2."Can Behavioral Requirements be Executed? (And why would we want to do so?)" by David Harel

LSCs (Live Sequence Charts)

- Modified MSCs (Message Sequence Charts)
- LSCs model system reactions that *must* happen as well as those that just *may* happen
- LSCs model messages that *must* be sent as well as those that just *may* be sent
- Two different kinds of LSCs:
 - Universal
 - Existential

Universal LSCs

- Model system reactions that *must* happen
- Drawn with solid border
- Pre-Chart is condition for main chart actions
- Violating these or exiting prematurely causes a system error/crash
- Drive system execution during Play-Out

Existential LSCs

- Model system reactions that may happen
- Drawn with dashed border
- Must be able to run to completion in at least one system scenario
- Monitored during Play-Out

LSC Logic Symbols

- Message (Arrow)
 - Hot (solid tail, must always be sent)
 - Cold (dashed tail, may be sent)
- Condition (Hexagon)
 - Half-circles denote object synchronicity
- Loop (Rectangle)
 - Integers in corner denote predetermined number of iterations

LSC Logic Symbols

- If-Else (Dashed Hexagon in Rectangles)
 - Rectangles contain consequences of each possible outcome
- Local Variable Assignment ("Note" Rectangles)
 - Half-circles denote object dependency

Play-In

- User only deals with GUI, not LSCs themselves
- Basic procedure:
 - 1. User creates use case and describes it
 - 2. User interacts with a GUI element as if actually running system (click buttons, highlight text, type text, etc.)
 - 3. User utilizes right-clicks/context menus on GUI elements to describe how they should be affected by previous interaction
 - 4. Play-Engine updates GUI interface and LSCs

automatically

5. User repeats steps 1-4 until all LSCs generated

Play-In

- Play-Engine provides dialogs to input information about if-else blocks, type of messages (hot or cold), and other logic symbols
- User can create functions to generalize actions (system responses to clicking digits 1-9 on a calculator)
- User can right-click a GUI element, choose "External Change" to mimic environmental

inputs/effects on objects' states

Play-Out

- The system runs as if it was fully implemented
- Displays active and monitored LSCs. User may ignore LSCs and focus on GUI
- Modes
 - Step (System stops after every reaction, waits for user input/acknowledgment)
 - Super-Step (System continues making reactions until no new ones can be made, waits for user input)

Play-Out

- "Cuts" show position of system in the LSCs
 - Hot ("Combed" red line, system aborts if LSC violated)
 - Cold ("Combed" blue line, system exits LSC if LSC violated)
- Play-Out runs can be saved in XML format
- LSCs are framed in blue when completed
- LSCs are crossed out when violated

Example: Simple Microwave

- System Constraints:
- Take button presses as "TimeRemaining"
- Start microwave on event"Start"
- Stop microwave on any of below
- event "Stop"
- event "OpenDoor"
- "TimeRemaining == 0"
- event "SmokeDetected"

Play-Engine Components

- Execution Manager
 - Sends data to LSCs
 Monitor and GUI, to
 update LSCs and
 interface
 - Play-In
 - Handles user actions
 - Play-Out
 - Activates universal LSCs
 - Makes system reactions according to

- Run Manager
 - Saves and loads runs
 - Sends data to LSCs
 Monitor and GUI, to
 update LSCs and
 interface
- LSCs Monitor
 - Handles active and other monitored LSCs

Play-Engine Functions

- Unify Messages
 - Positive Unification (Messages that can be done simultaneously)
 - Negative Unification (Messages that violate LSC if done simultaneously)
- Get Next Cut
- Find Unifiable Event
- Minimal Event in Chart
- Is Violating Event
- Choose Step

Advanced Topics

- Multiple Instances
 - Group/class object
 variables in LSCs
- Non-Deterministic Choice
 - Probabilities in if-else blocks ('Select(25, 75)'
 => 25% probability of True) in LSCs

- Time and Real-Time Variables
 - Clock object variables in LSCs
 - Play-In shows
 connections between
 two objects with time
 dependencies in LSCs

Advanced Topics

- External Objects
 - Outside objectvariables in LSCs
- Forbidden Elements
 - Hot or Cold, similar to messages and cuts
 - Play-Out shows
 connections between
 forbidden elements
 and objects in LSCs

- Smart Play-Out
 - Enhances Play-Engine
 - Searches for "correct" super-steps, those that do not violate any universal LSCs
 - Finds a sequence of reactions that leads to a state of zero active universal LSCs

Conclusions & Questions

The Play-In/Play-Out Approach:

- Simple
- Powerful
- Extendible
- Allows involvement of future users, domain experts

Final Questions?

References

- 1. Harel, David. "Can Behavioral Requirements be Executed? (And why would we want to do so?)"
- 2. Harel, David and Hillel Kugler. "Synthesizing State-Based Object Systems from LSC Specifications".
- 3. Harel, David and Rami Marelly. "Specifying and Executing Behavioral Requirements: The Play-In/Play-Out Approach". September 10, 2002.