
�

�
� �

�

� �

Riandi Wiguna
rian.wiguna@mail.mcgill.ca
School of Computer Science

McGill University
March 8, 2004

“You better hit bull's eye, the kid don't play.”
-Vanilla Ice, “Ice, Ice, Baby”

� �

1.Intro to Play-In/Play-Out
2.LSCs (Live Sequence Charts)
3.Play-In
4.Play-Out
5.Example: Simple Microwave
6.Play-Engine Components
7.Play-Engine Functions
8.Advanced Topics
9.Conclusions & Questions

� ��� � �

� � �

� �

The Play-In/Play-Out Approach is a way to easily
generate and test LSCs (Live Sequence Charts).
LSCs model all desired system reactions,
providing a complete design for the system.

The basic idea is to feed both input and desired
output into a “ Play-Engine” which generates
LSCs automatically. We then run the system
through the Play-Engine, making sure the system
satisfies our requirements.

� ��� � �

� � �

� �

A step-by-step view of the Approach:
1.Determine system requirements
2.Build system GUI (graphical user interface)
3.Play-In scenarios into GUI / Play-Engine makes

LSCs
4.Play-Out system through GUI, testing it / Play-

Engine displays system's fidelity to LSCs throughout
run

Both designers and end-users can participate in the
software design process through Play-In/Play-
Out.

� ��� � �

� � �

� �

This presentation is based off “ Specifying and
Executing Behavioral Requirements: The Play-
In/Play-Out Approach” by David Harel and Rami
Marelly, with additional information from:

1.“ Synthesizing State-Based Object Systems from LSC
Specifications” by David Harel and Hillel Kugler

2.“ Can Behavioral Requirements be Executed? (And
why would we want to do so?)” by David Harel

� � �

� Modified MSCs (Message Sequence Charts)

� LSCs model system reactions that must happen as
well as those that just may happen

� LSCs model messages that must be sent as well as
those that just may be sent

� Two different kinds of LSCs:

� Universal

� Existential

(from pgs. 4-6 of “ Specifying and
Executing...”)

� �

�

� Model system reactions that must happen

� Drawn with solid border

� Pre-Chart is condition for main chart actions

� Violating these or exiting prematurely causes a
system error/crash

� Drive system execution during Play-Out

� � � � �

� Model system reactions that may happen

� Drawn with dashed border

� Must be able to run to completion in at least one
system scenario

� Monitored during Play-Out

� �

� Message (Arrow)

� Hot (solid tail, must always be sent)

� Cold (dashed tail, may be sent)

� Condition (Hexagon)

� Half-circles denote object synchronicity

� Loop (Rectangle)

� Integers in corner denote predetermined number of
iterations

� �

� If-Else (Dashed Hexagon in Rectangles)

� Rectangles contain consequences of each possible
outcome

� Local Variable Assignment (“ Note” Rectangles)

� Half-circles denote object dependency

� � � � �

� �� �

� 	
 �

�

 �� �
� ��� � �

�
� ��� �
 � � � �

�

� � � � �

� �

�

�
�

� User only deals with GUI, not LSCs themselves

� Basic procedure:
1.User creates use case and describes it
2.User interacts with a GUI element as if actually

running system (click buttons, highlight text, type
text, etc.)

3.User utilizes right-clicks/context menus on GUI
elements to describe how they should be affected by
previous interaction

4.Play-Engine updates GUI interface and LSCs
automatically

5.User repeats steps 1-4 until all LSCs generated

(from pgs. 7-8 of “ Specifying and
Executing...”)

�

�
�

� Play-Engine provides dialogs to input information
about if-else blocks, type of messages (hot or
cold), and other logic symbols

� User can create functions to generalize actions
(system responses to clicking digits 1-9 on a
calculator)

� User can right-click a GUI element, choose
“ External Change” to mimic environmental
inputs/effects on objects' states

�

�

�

� The system runs as if it was fully implemented

� Displays active and monitored LSCs. User may
ignore LSCs and focus on GUI

� Modes

� Step (System stops after every reaction, waits for user
input/acknowledgment)

� Super-Step (System continues making reactions until
no new ones can be made, waits for user input)

(from pgs. 8-10 of “ Specifying
and Executing...”)

�

�

�

� “ Cuts” show position of system in the LSCs

� Hot (“ Combed” red line, system aborts if LSC
violated)

� Cold (“ Combed” blue line, system exits LSC if LSC
violated)

� Play-Out runs can be saved in XML format

� LSCs are framed in blue when completed

� LSCs are crossed out when violated

� �

�
� � �

� �

�
� � �

� �

�
� � �

� �

�

� � �

� �

�

� � �

� �

�

� � �

�

�

� �

� Execution Manager

� Sends data to LSCs
Monitor and GUI, to
update LSCs and
interface

� Play-In

� Handles user actions

� Play-Out

� Activates universal
LSCs

� Makes system
reactions according to
universal LSCs

� Run Manager

� Saves and loads runs

� Sends data to LSCs
Monitor and GUI, to
update LSCs and
interface

� LSCs Monitor

� Handles active and
other monitored LSCs

(from pgs. 25-26 of “ Specifying
and Executing...”)

�

�

� �

(from pg. 26 of “ Specifying and
Executing...”)

�

�

� � �

� Unify Messages

� Positive Unification (Messages that can be done
simultaneously)

� Negative Unification (Messages that violate LSC if
done simultaneously)

� Get Next Cut

� Find Unifiable Event

� Minimal Event in Chart

� Is Violating Event

� Choose Step

(from pgs. 26-28 of “ Specifying
and Executing...”)

�

� Multiple Instances

� Group/class object
variables in LSCs

� Non-Deterministic
Choice

� Probabilities in if-else
blocks ('Select(25, 75)'
=> 25% probability of
True) in LSCs

� Time and Real-Time
Variables

� Clock object variables
in LSCs

� Play-In shows
connections between
two objects with time
dependencies in LSCs

(from pgs. 30-36 of “ Specifying
and Executing...”)

�

� External Objects

� Outside object
variables in LSCs

� Forbidden Elements

� Hot or Cold, similar to
messages and cuts

� Play-Out shows
connections between
forbidden elements
and objects in LSCs

� Smart Play-Out

� Enhances Play-Engine

� Searches for “ correct”
super-steps, those that
do not violate any
universal LSCs

� Finds a sequence of
reactions that leads to
a state of zero active
universal LSCs

� � � �

The Play-In/Play-Out Approach:

� Simple

� Powerful

� Extendible

� Allows involvement of future users, domain experts

Final Questions?

�

1.Harel, David. “ Can Behavioral Requirements be
Executed? (And why would we want to do so?)”

2.Harel, David and Hillel Kugler. “ Synthesizing
State-Based Object Systems from LSC
Specifications” .

3.Harel, David and Rami Marelly. “ Specifying and
Executing Behavioral Requirements: The Play-
In/Play-Out Approach” . September 10, 2002.

