
A MetaChecker for pyGK

Presented By Aaron Shui

Overview

• The Problem

• Solution Approach

• pyGK Intro

• Petri Net Example and Demo

Problem

• Does a model adhere to its

metamodel?

• e.g. Is this a valid Petri Net?

�� ��

��

Define (Meta) Model

• A model is a collection of model elements.

• Each element can have attributes.

• Each element can be connected to other

elements (or itself).

Approach

• Function that checks a model against its
metamodel.

• Has 3 Phases:
– Phase I: Check types of elements.
– Phase II: Check attributes of elements
– Phase III: Check connections of elements

• Identifies major problems faster but runs
slower than a single phase checker.

Phase I: Elements

• Ensure every element is an instance of
something in the metamodel?
– e.g. Does “MyClass” belong in a Petri Net?

• Checked automatically in the latest version
of pyGK.

MyClass

Phase I Check

• Implemented it anyways
• For each element check if its type exists

as a meta element
– e.g. Does the concept Class exist in the

metamodel of Petri Nets?

Phase II: Attributes

• Use symbol table of attributed node in
pyGK
– Associate a predefined type with a name

• e.g. Number of tokens represented as an
entry in symbol table of type Integer.

Phase II Checks

• Check:

– Do all attributes have matching meta

attributes (name and type)?

– Are all uninstantiated meta attributes passed

down as attributes?

– Do any attribute override instantiated meta

attributes?

Phase III: Connections

• Elements of a model are connected to other
elements.
– e.g. Place can by connected to a Place2Trans

connector element.

• Are directed connections

• Note: these connections are not connectors in a
model
– e.g. Not: Association, Relationship, Trans2Place

Phase III Checks

• Are the meta elements of connected

elements connected?

• e.g. If Place: p1 and Place2Trans: p2t1

are connected, are Place and Place2Trans

connected?

pyGK

• Developed by Marc Provost

• Hi-Graph kernel for metamodeling

• Optimized for metamodeling

• Extended for graph

rewriting/transformation system

Hi-Graph in pyGK

Graph Element

Graph

Symbol TableNodes

Defining (Meta)Models

• Text based description - pyGK has no GUI
(yet)

• Build a foundational metamodel (ER)
using Hi-Graph formalism supported by
pyGK kernel.

• Build other models as instances of
foundational metamodel.

Petri Net in ER (Graphical)

Petri Net in ER (pyGK)
PN = Graph(ID = "PetriNet" , typeId = "ER")

PN.addElement(SymbolTable(ID = "Place" , typeId = "Entity" , value = {}))

PN.addElement(SymbolTable(ID = "Transition" , typeId = "Entity" , value = {}))

PN.addElement(SymbolTable(ID="Place2Trans",typeId="Relationship",value={}))

PN.addElement(SymbolTable(ID="Trans2Place",typeId ="Relationship",value={}))

PN.getElement("Place")["Tokens"] = Int()

PN.getElement("Place2Trans")["Weight"] = Int()

PN.getElement("Trans2Place")["Weight"] = Int()

PN.connect("Place", "Place2Trans")

PN.connect("Place2Trans", "Transition")

PN.connect("Transition", "Trans2Place")

PN.connect("Trans2Place", "Place")

Petri Net Model in Petri Net
PNm1 = Graph(ID = "PNm1" , typeId = "PetriNet")
p1 = SymbolTable(ID = "p1" , typeId = "Place" , value = {})
p2 = SymbolTable(ID = "p2" , typeId = "Place" , value = {})
t1 = SymbolTable(ID = "t1" , typeId = "Transition")
p2t1 = SymbolTable(ID = "p2t1" , typeId = "Place2Trans" , value = {})
t2p2 = SymbolTable(ID = "t2p2" , typeId = "Trans2Place" , value = {})
p1["Tokens"] = Int(value = 2)
p2["Tokens"] = Int(value = 0)
p2t1["Weight"] = Int(value = 2)
t2p2["Weight"] = Int(value = 2)
PNm1.addElement(p1) … PNm1.addElement(t2p2)
PNm1.connect("p1" , "p2t1") … PNm1.connect("t2p2" , "p2")

Faulty Petri Net
PNm1 = Graph(ID = "PNm1" , parent = root , typeId = "PetriNet")
p1 = SymbolTable(ID = "p1" , typeId = "Place" , value = {})
p2 = SymbolTable(ID = "p2" , typeId = "Place" , value = {})
t1 = SymbolTable(ID = "t1" , typeId = "Transition")
p2t1 = SymbolTable(ID = "p2t1" , typeId = "Place2Trans" , value = {})
t2p2 = SymbolTable(ID = "t2p2" , typeId = "Trans2Place" , value = {})
p1["Faulty Attribute"] = Int(value = 2)
p2["Tokens"] = Int(value = 0)
p2t1["Weight"] = Int(value = 2)
t2p2["Weight"] = Float(value = 2)
PNm1.addElement(p1) … PNm1.addElement(t2p2)
PNm1.connect("p1" , "p2t1") … PNm1.connect("t2p2" , "p2")
PNm1.connect("p1", "p2")

Future Work

• Support more complex connections
– e.g. Inheritance, Aggregation

• Difficulty: augment Graph or Interpreter?
– Graph: flexible user defined checking

– Interpreter: cleaner developer defined
checking

Future Work (2)

• Extend attribute types

– User defined attributes

– Metamodel Elements (necessary?)

– Indirectly supported via subclassing nodes

Questions?

References

• C. Atkinson, T. Kühne. Rearchitecting the
UML Infrastructure, ACM Journal:
Transactions on Modeling and Computer
Simulation, Vol. 12, No. 4, 2002.

• C. Atkinson, T. Kühne. The Essence of
Multi-Level Metamodeling. Proceedings of
the 4th International Conference on the
Unified Modeling Language, 2001.

