Refactoring
-By Means of Graph Rewriting

Chen Tang
April 5th, 2004

Contents

Review of the refactoring concept
Overview of the current refactoring tools

Multi-formalism modeling environment --
AToM3

Graph rewriting concepts & principles
Several refactoring rules LHS, RHS, etc.
An example

Conclusion

Recap of the refactoring concept

Behavior-preserving transformations are known as

refactorings.
Refactorings are changes whose purpose is to

make a program more reusable and easier to

understand, rather than to add behavior.

Refactorings are specified as parameterized program
transformations along with a set of preconditions that

guarantee behavior preservation if satisfied.

Goal of the refactoring tools

The main purpose of a refactoring tool is to
allow the programmer to refactor without
having to retest the program and automate as
many refactoring rules as possible. Testing is
time consuming even when automated, and
eliminating it can accelerate the refactoring

process by a significant factor.

What refactoring tools can do?

Can automate refactoring, free programmers from
having to perform mundane restructuring tasks
manually

Can both make refactoring less a separate activity

from programming and can make design mistakes
less costly.

Can reduce the amount of tests. Since All the
refactoring automated by refactoring tools are
provably right.

Can compose several primitive refactoring to attain
more complex refactoring. Since each primitive

refactoring preserves the behavior of the program,
the entire composition is itself behavior-preserving.

Currently existing refactoring tools

Refactoring Browser

o The Refactoring Browser is a powerful Smalltalk Browser
which allows the programmer to perform various automated
refactorings on Smalltalk source code

Transmogrify

o Transmogrify is a Java source analysis and manipulation
tool. The current focus of Transmogrify is as a cross-
referencing and refactoring utility.

C# refactory

o C# Refactory is a revolutionary new tool integrated
with VS.NET.

Resharper
o Yet another VS.NET plug-in

Technical criteria for a refactoring tools

Program Database

o The ability to search for various program entities across the
entire program is vital important for refactoring tool, this
information is maintained in a program database.

o For example: class, class’s attributes and methods etc.,
should all be store in the program databse
Parse Trees

o Most refactorings have to manipulate portions of the system
below the method level. To do this requires parse trees. A
parse tree is a data structure that represents the internal
structure of the method itself.

o Will store the components in the method

Practical criteria for a refactoring tool
Speed

o The analysis and transformation needed to perform
refactorings can be time consuming if they are very
sophisticated, refactoring must be fast, if not, programmer
will prefer to do the refactoring by hand.

The refactoring tool must be integrated into the
standard IDE.

o If integrated with IDE, all the refactoring functions are at the
fingertips of the programmers, it's convenient for people to
use. If not, no one would tend to use it.

Should support undo functionality

o With undo functionality, every thing can be explored with
Impunity, given that we can roll back to any prior version.

Practical criteria for a refactoring tool
(cont’d)

Avoid purely automatic reorganization

2 Whenever the refactoring tool do refactoring, it
should always prompt the programmer to ask for
the interaction, should avoid purely automatic
reorganization of the program.

Refactorings must be reasonably correct

o In order to to make the programmer enthusiastic
about using the refactoring too, the developer of
the tool should guarantee the correctness of every
refactoring rules implemented.

Multi-formalism modeling environment
-- AToM?

AToM? stands for A Tool for Multi-formalism and
Meta-Modeling"

AToM?3 is a tool for multi-paradigm modeling
o Use class diagram formalism in this project

The two main tasks of AToM3
o Meta-modeling
o Meta-transforming

Expression of Models

o Formalisms and models are described as graphs
o Model transformations are performed by graph rewriting

10

Graph grammar & graph rewriting in
AToM3

A graph grammar consists of several rules that
specify a formalism for a given language

Graph grammars are specified in AToM3 as
model transformations

The graph grammar using pattern

matching to find all the patterns which match
the transformation rule’s LHS .

11

\Define a new transformation

Define the LHS matching
pattern of the transformation

M ame
Order Define RHS of the transformation,
TirneD elay I.e., what LHS should be
_ replaced

Subtupes Matching? [

_ Here we place a bunch
= =l of python code, and
RHE i only when these code

return a true value can

Condition edit this transformation

rule be executed!

Action edit

Action, after this
transformation rule be
executed, the action code will
be executed, normally we put
update display and additional
functionalities here. 12

\ Interface for define transformation § LHS

Fol3 +0.2.2 using: ClassDiasrsm [
Filhl Bedall Gedhies
ClassDiagram || Modelops | Editentty | Connect | Delete | Inseitmodel | Expand model
Mew AomClass || ¥isualops | Smooth | Insert point | Delete paint | Change connector
Mew Ataméssociation :
New Generalization WSS
Edit Cade
T Al the entieg i
this diagram are
labeled, we|chn
access thege
. /}‘/entities in
MyChildClass condition a C:I)
action code} y
these labels.
hd
L 4| | i
|Editing ' _ion Based Design/Atom3 v.ﬂclassﬁjagramfmude}!mﬂdelﬂesﬂEdiﬁng transf. Monamed' (not modified) in file ‘Nonamed'
oK Cancel I3

Interface for define RH

ClassDiagram

Mew AtomClass

Mew Atomdssociation

Mew Generalization

Edit Code

o3 v0.2 2 using: ClassDiagram
File Model Graphies

Model ops | Edit entity | Conhect

Celete | Insert model | Expand model

Copy LHS |

L\iixual opz | Smoath

Inzert point

Delete point | Change cannector

Parent

Child

ki

i

[Editing ‘Nanamed' {not modified)

|Ed}ﬁng transf ‘Nonamed' (not modified) in file ‘Nonamed'

ok | Cancel |

14

‘ Interface for define transformation 3
condition

" Python € PREcondition [SAVE j
CREATE
+ [OCL &+ POSTcondition [COMMECT
' DELETE |
turn 1 il
Put condition (python)
code here
- |+
1] Cancel

‘ Interface for define transformation 3
action

wvalue

Congtraint name | aaaaaa
EDIT o
" Python ¢ PREcondition SAvE
CREATE
@ 0cL & POSTcondtion |COMMECT
DELETE j

Put action python code
here

0Ok Cancel

Transformations intend to be automated

Pull up field / pull up method

If subclasses are developed independently, or
combined through refactoring, they may have
duplicate field/method. This refactoring rule
removes the duplicate field/method, and move
them from the subclasses to the superclass.

Collapse hierarchy

If a superclass and the corresponding subclass
are not very different “merge them together”

17

Pull up field /pull up mehod (LHS

ol3 #0.2. 2 using: Classliagram

File Model Graphiles

Insert model | Expand madel

ClassDiagram Model ops Editentit_ul Connect | Delete

Mew stomClass L':"_'Iiflie_'lﬂ:'f- smooth

Inzert point | Delete point | Change connector

]
M ew Atarmdzzociation
=AM =
Mew Generalization
Edit Code
=ANY=
=ANY=
2 3
<ANY= <ANY=
<AMY= <AMNY=
<AMNY= <AMY = _l
EX| | L1) -
[Editing Nonamed' (modified) [Editing ‘Nonamed' (modified) in file ‘Nonamed'
OF. | Cancel |

Lrap. o
ClassDiagram | Modelops | Edit entity

Mew AtomClass | [_.\;iﬁl opz | Smooth

MNew dtomdgsaciation |
MNew Generalization |
Edit Code |

_______ Connect | Delete | Inzet model | Expand model CopyLHSl
Inzert point | Delete point | Change connector
=COPRIED= .
All the attributes of the

| superclass will be

=COPIED= .
v copied from LHS

=CORIED=

<COF’IED>\ =COPIED=

—

[The names

subclass w
copied from

kil

of the
Il be
LHS

[Editing Nonamed (modified)

|_Ed iting Monamed' (modified) in file Nonamed'

Canicel |

19

Pull up field/pull up method action

When load and execute pull up field/method transformation, AToM?3 will begin doing
pattern matching and when it finds there is a pattern matching the LHS of the pull up
field/method LHS, it will execute the following action:

1. Enumerate all the entities in the matching pattern; if it a class then locate al the
generalization rel ationships entities connected to this class entity, and according to
the connection we can determine the type of the class, whether it’s a superclass or
asubclass. At the same time keep down the parent/child class this class.

2. Start another round of enumeration. According to this class s parent pointer |locate
the parent, and according to parent’s child pointer locate all the sibling of this class.
Then search all the sibling s attribute/method list to find the same attribute/method
asthis class, if find any, pull up the attribute/method to the superclass, delete the
attribute/method from all sibling class and this class. Iterates until can’'t find any
attribute/method which has the same signature as this class' s attributes/methods.

3. Update the display

20

Collapse hierarchy overview

Collapse hierarchy is a composition
transformation:

o Pull up field

o Pull up method

o The actual collapse rule

21

Collapse hierarchy rule (LHS)

ol vl 2 2 nsing. Classliagram
File: Model Graphiecs
ClassDiagram | Modelops | Edit entityl Connect | Delete | Insert model | Expand model
Mew AtomiClass |I_'\HSIIEI| opz | Smoaoth | Insert point | Delete point | Change connector
Mew Atombssociation I
=ANY=
Mew Generalization
Edit Code
<ANY=
=AY =
=AMNY=
=ANY=
=AY =
: 4 LA =
[Editing Monamed' {madified) [Editing 'Nonamed' (modified) in file ‘Nonamed'
ok | Cancel |

Collapse hierarchy rule (RHS

Tol3 »0.2 2 using: ClassDisgram

File [Madel Graphics

ClassDiagram Mel_op_s Editentity | Conrect | Delete | Inzet model | Expand madel | Copy LHS
New AtomClass |_'V:iﬂa_l£|gs Smooth | Inzert point | Delete point | Change connector
M ew Atomdszociation
Mew Generalization q
Edit Code e |

| Preserve all the

<COPIED> attributes of the

/ superclass

<COPIED> /

B4 i

[Editing ‘Menamed' (not modified) [Editing Nonamed' {madified) in file ‘Nonamed

K | Cancel |

Collapse hierarchy rule condition code

Before the actual collapse hierarchy rule be executed, it should
check that the child class' s attribute field and method field and
other fields should be empty, in addition to that, the subclass
should be the final class, in other word, the subclass should not
have subclass. Thisisthe precondition code to execute before
apply the condition code:

thisrule.

24

Collapse hierarchy rule condition code
(cont’d)

Enumerate all the entities in the matching pattern; if it aclass
then locate all the generalization relationships entities
connected to this class entity, and according to the connection
we can determine the type of the class, whether it' sa

superclass or a subclass

Start another round of enumeration, if the entity wefind isa
subclass, and if the subclass attribute field or method field are
not empty or if the subclass has subclass then, we return 0O,

end execution.
After the enumeration of all the entitiesin agraph, return 1

25

Load collapse hierarchy
transformation and execute this
transformation on the following class
diagram graphical model

Example

Shape

Polyoon

Diamond Rectangle
calor colot
setizalor setColor
geti”olor getllolor

Ellipse

Oval

color

Cicrcle

setColor
getColor

color

setColor
getColost

27

Shape

JAN

Polycon

colot

Diamond Rectangle
setColor setColor
getColor getColor

Example after pull up field step 1

Oval

color

Cicicle

setColor
getColor

color

set’olor
getColott

Shape

P

Polygon

color

Diamond Rectangle
setColor setColor
getiColar getColor

Example after pull up field step 2

Owval Cicrcle
getColor getColor
getColor getColort

29

Shape

color

JAN

Polyzon

Diamond Rectancle
setiColor zetColor
EE'U: olor getj: olor

Example after pull up field step 3

Owal Cicrcle
setCaolor setColoy
et olor getColott

30

Example after pull up method (nearly
the same three steps)

Shape

getoolor
geteolor

JaN

Polygon Ellipse

Diamond Rectangle Owval Cicrcle

Example after collapse hierarchy step 1

Shape

Polyoon

Cicrc

32

Example after collapse hierarchy step 2

Polyoon Fllipse

33

'Example after collapse hierarchy step 3

shape

colot

aetcolor
getcolot

34

Conclusion

Refactoring is a common operation in software
lifecycle and this small project intend to implement
some refactoring tools in AToM? multi-formalism
meta-modeling environment using graph rewriting.

Some refactoring rules can’t be implemented using
graph rewriting alone, since some refactoring can’t be
completely automated, they need human interaction,
a lot of things should be specified by a human being!
(e.g. At lease need the specification of which
matching formalism, i.e., LHS be substituted by RHS.
It’s unsuitable to substitute every matching ones!)

35

References

Don Roberts, John Brant, and Ralph Johnson, A
Refactoring Tool for Smalltalk, Department of Computer
Science, University of lllinois at Urbana-Champaign

Refactoring object-oriented frameworks, William F.
Opdyke, Department of lllinois at Urbana_Champaign,
1992

Opdyke, William F. “Refactoring Object-Oriented
Frameworks.” Ph.D. diss., University of lllinois at
Urbana-Champaign. Department of Computer Science,
University of lllinois at Urbana-Champaign.

Introduction to graph grammar of AToM3
http://moncs.cs.mcqill.ca/people/mprovost/tutorial a/tut

a main.html

Martin Fowler, Refactoring improving the design of
existing code, Addison Wesley, 1999

36

Thanks!
Questions ?

