
1

Refactoring
-By Means of Graph Rewriting

Chen Tang
April 5th, 2004

2

Contents

n Review of the refactoring concept
n Overview of the current refactoring tools
n Multi-formalism modeling environment --

AToM3

n Graph rewriting concepts & principles
n Several refactoring rules LHS, RHS, etc.
n An example
n Conclusion

3

Recap of the refactoring concept
n Behavior-preserving transformations are known as

refactorings.

n Refactorings are changes whose purpose is to

make a program more reusable and easier to

understand, rather than to add behavior.

n Refactorings are specified as parameterized program

transformations along with a set of preconditions that

guarantee behavior preservation if satisfied.
Reference from [1]

4

Goal of the refactoring tools
The main purpose of a refactoring tool is to

allow the programmer to refactor without

having to retest the program and automate as

many refactoring rules as possible. Testing is

time consuming even when automated, and

eliminating it can accelerate the refactoring

process by a significant factor.

5

What refactoring tools can do?
n Can automate refactoring, free programmers from

having to perform mundane restructuring tasks
manually

n Can both make refactoring less a separate activity
from programming and can make design mistakes
less costly.

n Can reduce the amount of tests. Since All the
refactoring automated by refactoring tools are
provably right.

n Can compose several primitive refactoring to attain
more complex refactoring. Since each primitive
refactoring preserves the behavior of the program,
the entire composition is itself behavior-preserving.

6

Currently existing refactoring tools
n Refactoring Browser

q The Refactoring Browser is a powerful Smalltalk Browser
which allows the programmer to perform various automated
refactorings on Smalltalk source code

n Transmogrify
q Transmogrify is a Java source analysis and manipulation

tool. The current focus of Transmogrify is as a cross-
referencing and refactoring utility.

n C# refactory
q C# Refactory is a revolutionary new tool integrated

with VS.NET.
n Resharper

q Yet another VS.NET plug-in

7

Technical criteria for a refactoring tools

n Program Database
q The ability to search for various program entities across the

entire program is vital important for refactoring tool, this
information is maintained in a program database.

q For example: class, class’s attributes and methods etc.,
should all be store in the program databse

n Parse Trees
q Most refactorings have to manipulate portions of the system

below the method level. To do this requires parse trees. A
parse tree is a data structure that represents the internal
structure of the method itself.

q Will store the components in the method

8

Practical criteria for a refactoring tool
n Speed

q The analysis and transformation needed to perform
refactorings can be time consuming if they are very
sophisticated, refactoring must be fast, if not, programmer
will prefer to do the refactoring by hand.

n The refactoring tool must be integrated into the
standard IDE.
q If integrated with IDE, all the refactoring functions are at the

fingertips of the programmers, it’s convenient for people to
use. If not, no one would tend to use it.

n Should support undo functionality
q With undo functionality, every thing can be explored with

impunity, given that we can roll back to any prior version.

9

Practical criteria for a refactoring tool
(cont’d)
n Avoid purely automatic reorganization
q Whenever the refactoring tool do refactoring, it

should always prompt the programmer to ask for
the interaction, should avoid purely automatic
reorganization of the program.

n Refactorings must be reasonably correct
q In order to to make the programmer enthusiastic

about using the refactoring too, the developer of
the tool should guarantee the correctness of every
refactoring rules implemented.

10

Multi-formalism modeling environment
-- AToM3

n AToM3 stands for ``A Tool for Multi-formalism and
Meta-Modeling''

n AToM3 is a tool for multi-paradigm modeling
q Use class diagram formalism in this project

n The two main tasks of AToM3

q Meta-modeling
q Meta-transforming

n Expression of Models
q Formalisms and models are described as graphs
q Model transformations are performed by graph rewriting

11

Graph grammar & graph rewriting in
AToM3

n A graph grammar consists of several rules that
specify a formalism for a given language

n Graph grammars are specified in AToM3 as
model transformations

n The graph grammar using pattern
matching to find all the patterns which match
the transformation rule’s LHS .

12

Define a new transformation

Here we place a bunch
of python code, and
only when these code
return a true value can
this transformation
rule be executed!

Action, after this
transformation rule be
executed, the action code will
be executed, normally we put
update display and additional
functionalities here.

Define the LHS matching
pattern of the transformation

Define RHS of the transformation,
i.e., what LHS should be
replaced

13

Interface for define transformation’s LHS

All the entities in
this diagram are
labeled, we can
access these
entities in
condition and
action code, by
these labels.

14

Interface for define RHS

15

Interface for define transformation’s
condition

Put condition (python)
code here

16

Interface for define transformation’s
action

Put action python code
here

17

Transformations intend to be automated

n Pull up field / pull up method
If subclasses are developed independently, or
combined through refactoring, they may have
duplicate field/method. This refactoring rule
removes the duplicate field/method, and move
them from the subclasses to the superclass.

n Collapse hierarchy
If a superclass and the corresponding subclass
are not very different “merge them together”

18

Pull up field /pull up mehod (LHS)

19

Pull up field /pull up mehod (RHS)

All the attributes of the
superclass will be
copied from LHS

The names of the
subclass will be
copied from LHS

20

Pull up field/pull up method action
When load and execute pull up field/method transformation, AToM3 will begin doing
pattern matching and when it finds there is a pattern matching the LHS of the pull up
field/method LHS, it will execute the following action:

1. Enumerate all the entities in the matching pattern; if it a class then locate all the
generalization relationships entities connected to this class entity, and according to
the connection we can determine the type of the class, whether it’s a superclass or
a subclass. At the same time keep down the parent/child class this class.

2. Start another round of enumeration. According to this class’s parent pointer locate
the parent, and according to parent’s child pointer locate all the sibling of this class.
Then search all the sibling’s attribute/method list to find the same attribute/method
as this class, if find any, pull up the attribute/method to the superclass, delete the
attribute/method from all sibling class and this class. Iterates until can’t find any
attribute/method which has the same signature as this class’s attributes/methods.

3. Update the display

21

Collapse hierarchy overview
Collapse hierarchy is a composition
transformation:

q Pull up field

q Pull up method

q The actual collapse rule

22

Collapse hierarchy rule (LHS)

23

Collapse hierarchy rule (RHS)

Preserve all the
attributes of the
superclass

24

Collapse hierarchy rule condition code

Before the actual collapse hierarchy rule be executed, it should
check that the child class’s attribute field and method field and
other fields should be empty, in addition to that, the subclass
should be the final class, in other word, the subclass should not
have subclass. This is the precondition code to execute before
apply the condition code:
this rule.

25

Collapse hierarchy rule condition code
(cont’d)

1. Enumerate all the entities in the matching pattern; if it a class
then locate all the generalization relationships entities
connected to this class entity, and according to the connection
we can determine the type of the class, whether it’s a
superclass or a subclass.

2. Start another round of enumeration, if the entity we find is a
subclass, and if the subclass attribute field or method field are
not empty or if the subclass has subclass then, we return 0,
end execution.

3. After the enumeration of all the entities in a graph, return 1

26

Load collapse hierarchy
transformation and execute this

transformation on the following class
diagram graphical model

27

Example

28

Example after pull up field step 1

29

Example after pull up field step 2

30

Example after pull up field step 3

31

Example after pull up method (nearly
the same three steps)

32

Example after collapse hierarchy step 1

33

Example after collapse hierarchy step 2

34

Example after collapse hierarchy step 3

35

Conclusion
n Refactoring is a common operation in software

lifecycle and this small project intend to implement
some refactoring tools in AToM3 multi-formalism
meta-modeling environment using graph rewriting.

n Some refactoring rules can’t be implemented using
graph rewriting alone, since some refactoring can’t be
completely automated, they need human interaction,
a lot of things should be specified by a human being!
(e.g. At lease need the specification of which
matching formalism, i.e., LHS be substituted by RHS.
It’s unsuitable to substitute every matching ones!)

36

References
1. Don Roberts, John Brant, and Ralph Johnson, A

Refactoring Tool for Smalltalk, Department of Computer
Science, University of Illinois at Urbana-Champaign

2. Refactoring object-oriented frameworks, William F.
Opdyke, Department of Illinois at Urbana_Champaign,
1992

3. Opdyke, William F. “Refactoring Object-Oriented
Frameworks.”Ph.D. diss., University of Illinois at
Urbana-Champaign. Department of Computer Science,
University of Illinois at Urbana-Champaign.

4. Introduction to graph grammar of AToM3

http://moncs.cs.mcgill.ca/people/mprovost/tutorial_a/tut_
a_main.html

5. Martin Fowler, Refactoring improving the design of
existing code, Addison Wesley, 1999

37

Thanks!
Questions ?

