
Transforming Live Sequence
Charts into Statecharts

Riandi Wiguna
rian.wiguna@mail.mcgill.ca
School of Computer Science

McGill University
April 13, 2004

Overview

1.Recap of Play-In/Play-Out
2.Recap of LSCs (Live Sequence Charts)
3.LSC Specification in AToM3
4.LSC to Statechart Transformation
5.Transformed Microwave Functions
6.DChart Demo

Recap of Play-In/Play-Out

The Play-In/Play-Out Approach is a way to easily
generate and test LSCs (Live Sequence Charts).
LSCs model all desired system reactions,
providing a complete design for the system.

A full LSC specification of a system can be
transformed into statecharts.

Recap of Play-In/Play-Out

This presentation is based off “Synthesizing State-
Based Object Systems from LSC Specifications”
by David Harel and Hillel Kugler, with additional
information from:

1.“DCharts, a Formalism for Modeling and Simulation Based Design for
Reactive Software Systems” by Thomas Huning Feng

2.“Can Behavioral Requirements be Executed? (And why would we
want to do so?)” by David Harel

3.“Specifying and Executing Behavioral Requirements: The Play-
In/Play-Out Approach” by David Harel and Rami Marelly

Recap of LSCs

● Modified MSCs (Message Sequence Charts)

● Two different kinds of LSCs:
– Universal (Solid Border)

● Model system reactions that must happen
● Pre-Chart is condition for main chart actions
● Exiting these prematurely causes a system error/crash
● Drive system execution during Play-Out

– Existential (Dashed Border)
● Model system reactions that may happen
● Must be able to run to completion in at least one scenario
● Monitored during Play-Out

(from pgs. 4-6 of “Specifying
and Executing...”)

Universal Chart

if ()

then {
}

if ()

then {
}

else if () {
}

Existential Chart

LSC to Statechart Transformation

● Goal of this example:
transform LSC for the
'Popcorn' button into
language of Statecharts

● We'll use multiple
Statecharts

Popcorn Univ. LSC

1

2

3

4

5

6

7

7

1 2

4 5

6

Note transition 3: “/Power->POP_ACTIVE”
starts chain of object notification

1

1

2

12

2

Popcorn DChart

LSC to Statechart Transformation

1.Create one statechart for each unique object in
Universal LSC

2.For each statechart:
1.Create default state
2.Create one state for each action requiring the object
3.Chain states together with transitions.
4.Create one transition from state at end of chain to

default state
5.Label transitions with above actions and “ACTIVE”

notification

LSC to Statechart Transformation

3.Use orthogonal components if object is in more
than one Universal LSC*

4.Check Bad
max

, set of all supercuts without

successors or that lead to those without
successors*

*We didn't do these in the example

Transformed Microwave Functions

LSCs:
1.Add1Min
2.Clear
3.Popcorn
4.Defrost
5.Start
6.Stop
7.OpenDoorWhileOven

Active

Statecharts:
1.+1Min.
2.Clear
3.Popcorn
4.Defrost
5.Start
6.Stop
7.Power
8.Door
9.Timer
10.Oven

Results of Transformation

In the following statecharts, please assume all states
before “ACTIVE” notices have transitions to the
default states.

Power

Door

Timer

Oven

+1Min.

Start

Popcorn, Defrost

Demonstration & Questions

Final Questions?

References

1. Feng, Thomas Huining. “Charts, a Formalism for Modeling and
Simulation Based Design of Reactive Software Systems”.
http://moncs.cs.mcgill.ca/people/tfeng/thesis/thesis.html. Feb.
2004.

2. Harel, David. “Can Behavioral Requirements be Executed? (And
why would we want to do so?)”

3. Harel, David and Hillel Kugler. “Synthesizing State-Based Object
Systems from LSC Specifications”.

4. Harel, David and Rami Marelly. “Specifying and Executing
Behavioral Requirements: The Play-In/Play-Out Approach”.
September 10, 2002.

