Name Consistency Checker
in ATOMS3

Presented by Victoria Yang

Overview

Main constraint

Constrain Checker (CC) revisited
Implementation in ATOMS3

Demo

Future Work

Goal

Enforce name consistency over elements

In a model.

Petri Net Example.

Recall: The Constraint Checker (CC)

Map consistency constraint to checking
rule:

if Expression then Action

Apply checking rule to model.

The Constraint

UML Well-formedness rule:

If a contained element, which is not an
Association or Generalization, has a name then

the name must be unique in the Namespace

Generalization of Rule

Well-formedness Rule:

No instantiation of the same meta element may

have the same name

Petri Net Name Constraints

No two places may have the same name

within a model.

No two transitions may have the same

name within a model.

Map Name Constraint to Checking Rule

Checking rule:

If two instantiations of the same meta element have the

same name then they should be the same instantiation.

Problem with Checking Rule

Checking rule implies should merge similarly
name places and transitions into one.
Problem:

If modeler intended for separate entities, merger will
cause loss of info.

Solution:

rename one entities instead of merging.

Alteration of Checking Rule

New Checking Rule:

If two instantiations of the same meta element has the same

name then rename one of the instantiations

Petri Net Checking Rules

If two places have the same name within the model,

then rename a place of them

If two transitions have the same name within the

model, then rename a transition of them

CC Implementation in ATOM3

Implement constraint Hame
checking rules as graph
grammars in ATOM3'’s

graph rewriting system.

Fules

FetiletM amelChecker

rew edt dekte

PlaceM armes 1
UriquePlaceM ames: £
TraqztionManmes 3
UriqueT ranstioni ames 4

Implementation Issues

Problems:

Need to know whether entity has been

checked.

Need to trace changes made (which entities

were renamed).

Solution: Use Stereotypes

Extend metamodel with a tagged value.

}

@

FrTransition
FrFPlace . —— I
. - name type=5tring init.wal
narme type=5tring initval isChecked type=Integer inf

tokens type=Integer init.

isChecked type=Integer in A '
\plzltrlarl/ T

The Tagged Values

Implemented as an integer attribute of
Place and Transition for Petri Net.

Tagged Values
(isChecked, value)
Value = 0: Initial
Value =1: Name is unique

Value =2: Name is not unique

Graph Rewriting Rules for CC

Preprocessing

Rule 1: Place Names
Add all names of places to the global name list

Set their tagged values to 1

Graph Rewriting Rules for CC (2)

Apply checking rules for places in CC

Rule 2: Unique Place Names

_ook up duplicated names in the global name
ISt

Rename non-unique names until no more
duplicated names are found

Add new name to global name list, remove its
old name and set their tagged value to 2

Graph Rewriting Rules for CC (3)

Rules for transition namespace

Similar to rules for place namespace
Rule 3 : Preprocessing

Rule 4 : Apply checking rules for

transitions

Future Work with ATOMS3

Automation of extending meta element

with tags

Get user input to force action

References

Jean Louis Sourrouille, Guy Caplat: Checking UML Model
Consistency, Workshop on Consistency Problems in UML-based
Software Development, 2002

John Hendrik Haumann, Reiko Heckel, and Stefan Sauer: Extended
Model Relations with Graphical Consistency Conditions,Workshop
on Consistency Problems in UML-based Software Development,
2002

WenQian Liu, Steve Easterbrook and John Mylopoulos: Rule-based
Detection of Inconsistency in UML Models, Conditions, Workshop on
Consistency Problems in UML-based Software Development, 2002

UML Semantics: hito.//www-inf.int-evry.fr/COURS/UML/semantics/,
INT - Département INFormatique, France

