
Name Consistency Checker 

in ATOM3

Presented by Victoria Yang



Overview

�Main constraint 

�Constrain Checker (CC) revisited

� Implementation in ATOM3

�Demo

�Future Work



Goal

�Enforce name consistency over elements 

in a model.

�Petri Net Example.



Recall: The Constraint Checker (CC)

1. Map consistency constraint to checking 
rule:

� �������������	�����
����	

2. Apply checking rule to model.



The Constraint

�UML Well-formedness rule:

�If a contained element, which is not an 

Association or Generalization, has a name then 

the name must be unique in the Namespace



Generalization of Rule

�Well-formedness Rule:

�No instantiation of the same meta element may 

have the same name



Petri Net Name Constraints

1. No two places may have the same name 

within a model.

2. No two transitions may have the same 

name within a model.



Map Name Constraint to Checking Rule

� Checking rule:

� If ��	���
��������	�
�	������
����������
���������������


��������then �����
�	�
���������
������
��������	��



Problem with Checking Rule

� Checking rule implies should merge similarly 

name places and transitions into one.

� Problem: 

� if modeler intended for separate entities, merger will 

cause loss of info.

� Solution: 

�rename one entities instead of merging.



Alteration of Checking Rule

�New Checking Rule:

�If ��	���
��������	�
�	������
����������
��������
�����
����

����then �������	���	��������
��������	�
�



Petri Net Checking Rules

1. If ��	��
���
����������
���������������������	��
, 

then ����������
����	������

2. If ��	�����
���	�
����������
��������������������

�	��
, then �������������
���	��	������



CC Implementation in ATOM3

� Implement constraint 
checking rules as graph 
grammars in ATOM3’s 
graph rewriting system.



Implementation Issues

�Problems:

�Need to know whether entity has been 

checked.

�Need to trace changes made (which entities 

were renamed).



Solution: Use Stereotypes

�Extend metamodel with a tagged value.



The Tagged Values

� Implemented as an integer attribute of 
Place and Transition for Petri Net.

�Tagged Values
�(isChecked, value)

�Value = 0: Initial

�Value = 1: Name is unique

�Value = 2: Name is not unique 



Graph Rewriting Rules for CC

�Preprocessing

�Rule 1: Place Names

�Add all names of places to the global name list

�Set their tagged values to 1



Graph Rewriting Rules for CC (2)

�Apply checking rules for places in CC

�Rule 2: Unique Place Names
�Look up duplicated names in the global name 

list

�Rename non-unique names until no more 
duplicated names are found

�Add new name to global name list, remove its 
old name and set their tagged value to 2



Graph Rewriting Rules for CC (3)

�Rules for transition namespace

�Similar to rules for place namespace

�Rule 3 : Preprocessing

�Rule 4 : Apply checking rules for 

transitions



Future Work with ATOM3

�Automation of extending meta element 

with tags

�Get user input to force action



References

� Jean Louis Sourrouille, Guy Caplat: Checking UML Model 
Consistency, Workshop on Consistency Problems in UML-based 
Software Development, 2002 

� John Hendrik Haumann, Reiko Heckel, and Stefan Sauer: Extended 
Model Relations with Graphical Consistency Conditions,Workshop
on Consistency Problems in UML-based Software Development, 
2002

� WenQian Liu, Steve Easterbrook and John Mylopoulos: Rule-based 
Detection of Inconsistency in UML Models, Conditions,Workshop on 
Consistency Problems in UML-based Software Development, 2002

� UML Semantics: http://www-inf.int-evry.fr/COURS/UML/semantics/, 
INT - Département INFormatique, France


