
1

GenGED vs AToM3

Presented by Denis Dubé
Feb 28, 2005

2

Overview

� Introduction
� Generating visual languages
� Simulation & Animation
� Conclusion

3

Overview

� Introduction
�Acronyms
�Motivations
�Philosophies
� Implementations

� Generating visual languages
� Simulation & Animation
� Conclusion

4

Acronyms

� Generation of Graphical
Environments for Design

� A Tool for Multi-formalism and
Meta-Modeling

5

Motivations

� Visual modeling and specification
techniques are extremely useful for a host
of domain specific applications

� Visual modeling environments are
expensive to hand-code
�Therefore it is highly desirable to

automatically generate the environment from
a meta-model

6

� Visual definition of visual
languages and VL model
manipulation

� Everything is a model

� Model everything explicitly

Philosophies

7

� Emphasis on visuals results in
integrated graphical constraints
handler, PARCON package

� All model manipulation done using
graph grammars, AGG package

� Explicit meta-model (ie. Entity
Relationship) to create VL
environments

� Graph grammars used to lesser
extent, not as visual

Philosophies Realization

8

� Java but the PARCON
constraints handler is in
Objective C, thus GenGED
works only on Linux & Solaris

� Python 2.3 and Tcl/Tk 8.3 (or
better), completely platform
independent (in theory)

Implementation

9

Overview

� Introduction
� Generating visual languages

�The AToM3 way
�Alphabet editor
�Alphabet rules
�Visual language rules
�Syntax and Parse Grammars

� Simulation & Animation
� Conclusion

10

Generating VL’s
� Entity Relationship

See board

11

Generating VL’s
� Class diagrams (Entity Relationship model)

12

Generating VL’s
� Class diagrams (Class diagram model)

13

Overview

� Introduction
� Generating visual languages

�The AToM3 way
�Alphabet editor
�Alphabet rules
�Visual language rules
�Syntax and Parse Grammars

� Simulation & Animation
� Conclusion

14

Running Example

� Class diagrams VL

� Elements:
� Class diagrams
� Classes
� Associations between

classes
� Association classes

15

Alphabet editor

� Graphical Object Editor (draw visual icons)

� TypiEditor (map icons to semantic objects)
� ConEditor (connect semantic objects)

16

Alphabet editor: GOE

� Primitive objects: rectangles, circles, arrows, etc.

� Composite of primitive objects linked via
graphical constraints

See board

17

Alphabet editor: TypiEditor

� Mapping to graph
nodes/edges of:
� Graphical Objects

� Place holders (non-visual)

� Creation of attribute data
types by instantiating
built-in data types

18

Alphabet editor: ConEditor

� Attribution mode: map nodes/edges with one or more
data types

� Link mode: source and target definition for edges

19

Overview

� Introduction
� Generating visual languages

�The AToM3 way
�Alphabet editor
�Alphabet rules
�Visual language rules
�Syntax and Parse Grammars

� Simulation & Animation
� Conclusion

20

Alphabet rules

� Automatically generated for insertion & deletion
� Node insertion: LHS = empty � RHS = new node
� Edge insertion: LHS = 1+ nodes � RHS = new edge

Example: Edge Insertion

21

Alphabet rules

� Automatically generated for insertion & deletion
� Data types:

LHS = Node/edge � RHS = Attributed Node/edge

Example: String attribute insertion

22

VL Rule Editor

� Idea: use the basic alphabet rules to create
more powerful ‘VL Rules’
� Example: insertion of a class

Alphabet rule:
Class diagram insertion

VL rule (not finished):
Class insertion

23

VL Rule Editor

� End result: VL Rule replaces the automatically
generated alphabet rule
� Example: insertion of a class

VL rule (finished):
Class insertion

VL rule (not finished):
Class insertion

24

VL Rule Editor

� More VL rules examples:

VL rule:
Insert association class

VL rule:
Insert association

25

VL Rule Application

� How are these rules applied?

� Example: automatically generated alphabet rule

Example: Edge Insertion

26

VL Rule Application

� Illustration of one match morphism for the
previous rule

Rule

Host
Graph

27

Overview

� Introduction
� Generating visual languages

�The AToM3 way
�Alphabet editor
�Alphabet rules
�Visual language rules
�Syntax and Parse Grammars

� Simulation & Animation
� Conclusion

28

Syntax Grammar

� Of what benefit are the VL rules?

� The VL rules form a syntax grammar that ensure that
a diagram being constructed or modified is always
correct with respect to the VL model

� Definition: A VL model is the set of all possible
diagrams in a given visual language

29

Syntax Grammar
� AToM3 emulates a syntax grammar (in

some sense) with preconditions and
postconditions

� Caveat: it is nonetheless possible to
construct incorrect diagrams

See board

30

Parse Grammar

� What if the syntax grammar is too restrictive for
interactive diagram editing?

� Create a set of rules that work from a simple start
diagram and tries to build the current working diagram

Or
� Create a set of rules that removes components of the

current working diagram until it reaches a simple end
diagram

See board

31

GenGED Overview

32

Overview

� Introduction
� Generating visual languages
� Simulation & Animation

�Motivation
�The AToM3 way
�Simulation grammar
�Simulation VS Animation
�Animation & View transformation

� Conclusion

33

Motivation for simulation

� Simulation rules give the operational
semantics of the underlying system
represented by the visual model

�Example: Petri-nets for the Traffic model

34

Motivation for animation

� Intuitive understanding of system behavior
(especially for non-experts) cannot be
expected in a (semi-) formal modeling
language (ie: Petri-nets, Automatons)

� Desirable to visualize model & behavior in
the application domain (ie: want to work
with Traffic models not Petri-nets)

35

Simulation & Animation

� AToM3 handles model simulation by:
�Graph grammars (lack of negative application

conditions means some coding is required)
�Hard-coded simulator

� AToM3 handles model animation by:
�Graph grammars (currently broken in version 0.3)

�Hard-coded animation

36

Running example

� Producer Consumer VL

Alphabet for producer
consumer VL

Edges/Nodes

Data types

Legend:

37

Running example

� Producer Consumer VL

Example visual model

Edges/Nodes

Data types

Legend:

38

Simulation

� Describe behavior of the VL model using graph
grammars (aka: a simulation grammar)
� Rules represent model modification steps

� Rules = !NAC + LHS � RHS
� Definition: a NAC is a negative application condition,

if an LHS of a rule matches, but the NAC also
matches, the rule is not applied

39

Simulation

� Simulation Rule 1:
� Production of a good at a ‘Producer’ component

Note: Data types not shown explicitly in the abstract layer

40

Simulation

� Simulation Rule 2:
� Delivery of a good from a Producer to a Buffer

Note: Data types not shown explicitly in the abstract layer

41

Simulation

� Simulation Rule 3:
� Removal of a good from the Buffer to the Consumer

Note: Data types not shown explicitly in the abstract layer

42

Simulation

� Simulation Rule 4:
� Consumption of a good by the Consumer

Note: Data types not shown explicitly in the abstract layer

43

Simulation

� Each rule application/derivation is a simulation step

Note: Data types not shown explicitly in the abstract layer

44

GenGED Overview

45

Overview

� Introduction
� Generating visual languages
� Simulation & Animation

�Motivation
�The AToM3 way
�Simulation grammar
�Simulation VS Animation
�Animation & View transformation

� Conclusion

46

Simulation VS Animation

� Simulation visualizes discrete state
changes within the VL model itself

� Animation visualizes continuous state
changes in a domain-oriented layout
�Example: A traffic system with cars that move

along a road and traffic lights that change
colors

47

Animation

� Transformation from VL model and the
associated simulation rules to an animation view
must be done with care
� Must avoid deviations between the two or worse,

contradictions!
� In particular: we want to preserve the precision of the

(semi-) formal model in the animation view

� Therefore: generate the animation view
systematically from the VL model with a formal
view transformation grammar

48

View Transformation

� The view transformation grammar:
� Transforms the VL model to a domain specific layout
� Transforms the simulation grammar into an animation

grammar

� Permits the addition of attributes to the simulation
grammar that allow for continuously changing objects
(ie: position, size, color, of objects can change
continuously between specified time intervals)

49

View Transformation

� Producer consumer model & two animation views

50

Transformation Grammar

� Idle Producer transformation

51

Transformation Grammar

� Busy Producer transformation

52

Transformation Grammar

� Empty Buffer transformation

53

Transformation Grammar

� Full Buffer transformation

54

Transformation Grammar

� Empty Consumer transformation

55

Transformation Grammar

� Full Consumer transformation

56

Animation Grammar

� Automatic transformation of Simulation rule to
Animation rule

57

Overview

� Introduction
� Generating visual languages
� Simulation & Animation
� Conclusion

58

Conclusion

� GenGED and AToM3 are similar
� Generate visual language environments
� Allow simulation & animation
� Rely on graph grammar transformations extensively

� The visual emphasis of GenGED, at least on the
surface, makes it a far more accessible tool
� No/less hand-coding
� Systematic animation system

59

Conclusion

� Graphical Constraints

� GenGED provides high level constraints
� Example: rectangle1 sameBorderwidth rectangle2

� These constraints are mapped to one or more low
level constraints that PARCON understands

60

Conclusion

� Graphical Constraints

� Graphical constraints are a key component in
GenGED since they are used to:

� Create composite graphical objects with multiple primitives

� Anchor arrow points at object borders

� Enforce insideness relations between objects

61

Sources

� Sencario Views for Visual Behavior Models in GenGED
� Authors: C. Ermel and R. Bardohl
� Proc. Workshop on Graph Transformation and Visual Modeling Techniques (GT-

VMT'02), Satellite Event of First Int. Conference on Graph Transformation
(ICGT'02), Barcelona, Spain, Oct. 2002, pages 71-83

� http://www.tfs.cs.tu-berlin.de/~rosi/publications/EB02_gtVMT.ps.gz
� A Generic Graphical Editor for Visual Languages based on Algebraic Graph

Grammars
� Author: Roswitha Bardohl
� Proc. IEEE Symposium on Visual Languages (VL'98), Sept.1998, Halifax,

Canada, pages 48-55
� http://www.tfs.cs.tu-berlin.de/~rosi/publications/Bar98_VL98.ps.gz

� GenGED - A visual definition tool for visual modeling environments
� Authors: Bardohl,R., Ermel,C., and Weinhold,I.
� Proc. Application of Graph Transformations with Industrial Relevance

(AGTIVE'03), pages 407-414, Sept./Oct., 2003, Charlottesville/Virgina, USA.
Also in Lecture Notes in Computer Science (LNCS) 3062, Springer, 2004, pages
413-419

� http://www.tfs.cs.tu-berlin.de/~rosi/publications/BEW03_AGTIVE03.ps.gz

62

Sources

� Conceptual Model of the Generic Graphical Editor GenGEd for the Visual
Definition of Visual Languages
� Authors: Bardohl,R. and Ehrig,H.
� Lecture Notes in Computer Science (LNCS) 1764: Theory and Application of

Graph Transformation (TAGT'98), Springer 1999, pages 252-266
� http://www.tfs.cs.tu-berlin.de/~rosi/publications/BE99_TAGT98_Lncs.ps.gz

� Scenario Animation for Visual Behavior Models: A Generic Approach
Applied to Petri Nets
� Authors: Bardohl,R. and Ermel,C.
� Proc. 10th Workshop on Algorithms and Tools for Petri Nets (AWPN'03) Sept.

2003, Eichstätt-Ingolstadt, Germany.
� http://www.tfs.cs.tu-berlin.de/~rosi/publications/BE03_AWPN.ps.gz

� Specifying Visual Languages with GenGED
� Authors: Bardohl,R., Ehrig,K., Ermel,C., Qemali,A. and Weinhold,I.
� Proc. APPLIGRAPH Workshop on Applied Graph Transformation (AGT'02),

Satellite Event of ETAPS 2002, Grenoble, France, April 12-13, 2002, pages 71-
82

� http://www.tfs.cs.tu-berlin.de/~rosi/publications/BEEQW02_AGT.ps.gz

