
Class Diagrams with Constraints

Philippe Nguyen
McGill University

COMP-762 Winter 2005

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 2

Topics Outline
Motivation

Solution
Metamodel
Code Generation
Type Checker
Constraint Checker

Validation
Order System Example

Future Work

Conclusion

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 3

Motivation

MOF/UML:
Use OCL and natural language to constrain the
metamodel

Are OCL and natural language constraints
included in the metamodel itself?

True bootstrapping would assume so…

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 4

Motivation:
Current Situation in MOF 2.0

The constraint specification is a ValueSpecification
A ValueSpecification identifies values in a model
Can be an Expression (e.g. a + b = 3)
Can be an OpaqueExpression (e.g. an OCL statement)

Where does it go from there?

ElementConstraint
0..n

+constrainedElement
0..n

Namespace
0..1

+context
0..1

0..1 0..n
+namespace
0..1

+ownedRule
0..n

ValueSpecification

0..1

1

0..1

+specification
1

Expression
symbol : String

+operand

+expression
0..1

0..n

0..1

0..n

OpaqueExpression
body : String
language : String

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 5

Motivation:
Goals

Define a metamodel for Class Diagrams in
which constraints are also metamodeled

Be able to check a model instance against
a model defined in this “new” formalism

Start using pyGK

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 6

Solution:
General Approach (1)

ClassDiagramWithConstraints

Class Diagram Constraint
Language

references

ClassDiagramWithConstraints
Modeling EnvironmentAToM3

Model
+

Constraints
(ASG)

produces

Re-metamodel Class Diagrams
Including a constraint language

Abstract (and concrete) syntax
Inspired by MOF and OCL

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 7

Solution:
General Approach (2)

ASG2pyGK

Model
+

Constraints
(pyGK)

model_pyGK.py

def model_MDL():

def constraint1(context):
def constraint2(context):
…

model_chkr.py

def model_MDL_chkr():

checks
type

checks
constraints

generatege
ne

ra
te

Model
+

Constraints
(ASG)

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 8

Solution:
ClassDiagramsWithConstraints (1)

Class
Diagram
Part

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 9

Solution:
ClassDiagramsWithConstraints (2)

Constraint
Part

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 10

Solution:
Overview of pyGK (1)

The Python Graph Kernel

Developed by Marc Provost

An easy to use API for graph representation

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 11

Solution:
Overview of pyGK (2)

_id: unique identifier

_label: “type”

PrimitiveTypes:
Int, Float, Bool, String, List
SymbolTable / AttrNode

Straightforward functions to:
Construct a graph:

add(), connect()
Traverse a graph:

BFS, DFS

Ref: moncs.cs.mcgill.ca/MSDL/presentations/05.02.18.MarcProvost.pyGK/presentation.pdf

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 12

Solution:
Converting ASG model to pyGK

E.g.

A

+att1: Int

B

+att2: String

C

+att3: Float

1..1 0..N

Class Diagram in pyGK format

model = Graph(ID=“model”, label=“ClassDiagram”)

A = AttrNode(ID=“A”, label=“Class”)
A[“att1”] = Int()
B = AttrNode(ID=“B”, label=“Class”)
B[“att2”] = String()
C = AttrNode(ID=“C”, label=“Class”)
C[“att3”] = Float()
hasB = AttrNode(ID=“hasB”, label=“Association”)
hasB[“srcMultMin”] = Int(value=1)
hasB[“srcMultMin”] = Int(value=1)
hasB[“trgMultMin”] = Int(value=0)
hasB[“trgMultMin”] = String(value=“N”)
CInheritsB = AttrNode(ID=“CInheritsB”, label=“Inherit”)

// Add and connect nodes in model

hasB

Class Diagram in ASG format

Iterate through the ASGNodes
and generate…

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 13

Solution:
Converting ASG constraint to pyGK

E.g

Invariant1

GREATER_EQ

PersonAge Zero
0

<<bodyExp>>

<<argument>>
1

<<argument>>
2

Constraint expression in ASG format Constraint expression in pyGK fomrat

constraints = model(ID=“constraints”, label=“Constraints”)

Invariant1 = AttrNode(ID=“Invariant1”, label=“Invariant”)
comp1 = AttrNode(ID = "comp1", label = "ComparisonOp")
PersonAge = AttrNode(ID="PersonAge", label="AttributeCall")
PersonAge["calledAttributeType"] = Int()
PersonAge["calledAttributeName"] = String(value="Age")
PersonAge["owningClassifier"] = String(value="Person")
comp1["operator"] = String(value = "GREATER_EQ")
comp1[“argument1”] = PersonAge
comp1[“argument2”] = Int(value=0)
Invariant1[“bodyExp”] = comp1
Invariant1[“context”] = String(value=“Person”)

// Add and connect nodes in constraints
Iterate through the ASGNodes

and generate…

Person

+Age: Int

<<calledAttribute>>

<<context>>

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 14

Solution:
Saving to file (1)

Define an API for constructing Python code:
A sort of an AST interface for Python
E.g. an Assignment Statement is

AssignmentStmt ::= LHS “ = ” RHS
LHS ::= LiteralStmt
RHS ::= LiteralStmt | OperationStmt

Using this API, we can generate code constructs like If
statements and function calls

Also supports indentation for writing out Python code

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 15

Solution:
Saving to file (2)
lit1 = LiteralStmt("a")
lit2 = LiteralStmt("in")
lit3 = LiteralStmt("c")
listLit = LiteralStmt("[0, 1, 2, 3]")
trueLit = LiteralStmt("True")
zeroLit = LiteralStmt("0")
imp1 = ImportStmt(LiteralStmt("pack"), LiteralStmt("mod"))
def1 = DefStmt(LiteralStmt("foo"), [lit2])
blk1 = BlockStmt([imp1])
blk1.appendReturnCarriage()
blk1.appendStmt(def1)
ass1 = AssignmentStmt(lit1, lit2)
plus1 = NaryOpStmt(LiteralStmt("+"), [lit1, lit2])
ass2 = AssignmentStmt(LHS=lit3, RHS=plus1)
eq1 = BinaryOpStmt(LiteralStmt("=="), [lit3, trueLit])
call1 = FunctionCallStmt(context=None, fnName=LiteralStmt("len"), arguments=[listLit])
less1 = BinaryOpStmt(LiteralStmt("<"), [call1, zeroLit])
if1 = IfStmt(eq1, BlockStmt([ReturnStmt(trueLit)]), BlockStmt([ReturnStmt(less1)]))
blk2 = BlockStmt([ass1, ass2, if1])

print blk1.toString(0)
print blk2.toString(1)

Output:

from pack import mod

def foo(in):
a = in
c = (a + in)
if (c == True):

return True
else:

return (len([0, 1, 2, 3]) < 0)

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 16

Solution:
Saving to file (3)

Saving the model:
Define a function:
def <modelName>_MDL():

Spit out the pyGK statements that can rebuild the model

Saving the constraints:
For each constraint, define a function:
def <constraintName>(context):

Turn the pyGK format into Python code using the syntax
API

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 17

Solution:
Type Checking

Checks that a model instance conforms to a model

It entails checking

That every instance element corresponds to a meta-element

That every instance element owns only properties that its meta-
element can own

That every association in the model is respected

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 18

…every instance element corresponds to
a meta-element

For every (pyGK) Node in the instance,
Check that the model contains a Node whose id
corresponds to the instance Node’s label

E.g.
In model: In instance:

AttrNode(id=“A”, label=“Class”) AttrNode(id=“myA”, label=“A”)

A

+att1: Int

myA : A

+att1 = 0

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 19

… every instance element owns only
properties that its meta-element can own

For each key in an AttrNode of the instance,
Check that the corresponding meta-element, or a super type of
the meta-element, has the same key
Check that the values for the corresponding keys have the
same type

E.g.
In model: In instance:

A = AttrNode(id=“A”, label=“Class”) myA = AttrNode(id=“myA”, label=“A”)
A[“att1”] = Int() myA[“att1”] = Int(value=0)

A

+att1: Int

myA : A

+att1 = 0

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 20

…every association in the model is
respected (1)

Check that their instances attach the correct
types, as permitted by the model

For every association,
Get the hierarchy of the source and built a list of IDs
Do the same for the target
Check that every instance connects

• a source whose label is in the source ID list
• a target whose label is in the target ID list

Complexity: Inheritance

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 21

…every association in the model is
respected (2)

Check that their instances respect the
multiplicities

Build a tuple table of all the instance links
Check:

srcMultMin <= # source instances <= srcMultMax
trgMultMin <= # target instances <= trgMultMax

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 22

Solution:
Constraint Checking

In type checking, the checker can be written
offline

Applicable to any model

For constraint checking, the checker is specific
to the model

So, we need to generate something that will check each
contraint against every instance of the constraint’s
context

Call the generated Python function
Don’t forget sub types!

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 23

Validation

So does all this work???

Let us see the solution in action

Order System Example

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 24

Validation:
What do we have now?

A constraint language that is included within the
Class Diagram metamodel

“Static” checking of model instances
A client application of the checker would input a model
instance that is considered to be “stable” at that point

A concrete application for pyGK

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 25

Validation:
Limitations & Future Work

What about operations?

N-ary associations

Visually surcharged models
But the abstract syntax tree will look something like that…

Expressiveness of the constraint language
Add more constructs like for loop or select operation

Tests on bigger models
Performance issues?

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 26

More Future Work

Check multiplicities as constraints
So Type Checker would be a pure structural check

Generation of modeling environment
Generate a modeling environment from
ClassDiagramWithConstraints but without the
constraint language

Bootstrapping
Re-metamodel ClassDiagramWithConstraints in itself

Defining the constraints in the constraint language itself

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 27

Acknowledgements

Special thanks to:

Dr. Hans Vangheluwe

Dr. Juan de Lara for ClassDiagram formalism in AToM3

Marc Provost for help on pyGK and metamodeling

07/04/2005 Philippe Nguyen McGill University COMP-762 Winter 2005 28

References

1. Object Management Group, UML 2.0 Infrastructure Final Adopted
Specifcation, Available Online, URL:
http://www.omg.org/docs/ptc/03-09-15.pdf, September 2003

2. Object Management Group, MOF 2.0 Core Final Adopted Specification ,
Available Online, URL: http://www.omg.org/docs/ptc/03-10-04.pdf,
October 2003

3. Object Management Group, MOF-XMI Final Adopted Specification,
Available Online, URL: http://www.omg.org/docs/ptc/03-11-04.pdf,
November 2003

4. Object Management Group, UML 2.0 OCL Specification, Available Online,
URL: http://www.omg.org/docs/ptc/03-10-14.pdf, Octoer 2003

5. C. Kiesner, G. Taentzer, J. Winklemann, Visual OCL: A Visual Notation of
Object Constraint Language, Available Online, URL:
http://tfs.cs.tu-berlin.de/vocl/, 2002

http://www.omg.org/docs/ptc/03-09-15.pdf
http://www.omg.org/docs/ptc/03-10-04.pdf
http://www.omg.org/docs/ptc/03-11-04.pdf
http://www.omg.org/docs/ptc/03-10-14.pdf
http://tfs.cs.tu-berlin.de/vocl/

	Class Diagrams with Constraints
	Topics Outline
	Motivation
	Motivation:�Current Situation in MOF 2.0
	Motivation:�Goals
	Solution:�General Approach (1)
	Solution:�General Approach (2)
	Solution:�ClassDiagramsWithConstraints (1)
	Solution:�ClassDiagramsWithConstraints (2)
	Solution:�Overview of pyGK (1)
	Solution:�Overview of pyGK (2)
	Solution:�Converting ASG model to pyGK
	Solution:�Converting ASG constraint to pyGK
	Solution:�Saving to file (1)
	Solution:�Saving to file (2)
	Solution:�Saving to file (3)
	Solution:�Type Checking
	…every instance element corresponds to a meta-element
	… every instance element owns only properties that its meta-element can own
	…every association in the model is respected (1)
	…every association in the model is respected (2)
	Solution:�Constraint Checking
	Validation
	Validation:�What do we have now?
	Validation:�Limitations & Future Work
	More Future Work
	Acknowledgements
	References

