
MDE Assignment 2:

Meta-modeling and conformance checking

Joeri Exelmans
contact: joeri.exelmans@uantwerpen.be

October 16, 2024

1 Introduction

In this assignment, we will manually create (meta-)models and check confor-
mance between them. We will also visualize conformance links using PlantUML.

Model
Model
Model

Meta-model

extract

(automated) bounded
exploration

check conformance

Meta-model
Model
Model
Model

Meta-model Model
Model
Model

(manual) creation (e.g.,
syntax-directed editor)

ModelMeta-model

(1)

(3)

(2)

(4)

Figure 1: Overview of activities involving (meta-)models.

We will use a custom (meta-)modeling framework, written in Python. In this
framework, both models and meta-models are encoded as graphs. Moreover, a
meta-model (i.e., a class diagram) can also be seen as a model (i.e., an object
diagram), which conforms to ameta-meta-model (i.e., a class diagram describing
the language of class diagrams). The meta-meta-model conforms to itself. The
conformance relations are shown in Figure 2 and Figure 3. Figure 4 shows the
full meta-meta-model.

1

mailto:joeri.exelmans@uantwerpen.be

DSL meta-model

DSL model 1

conforms to

Class Diagrams
meta-model

conforms to

conforms to

DSL model 2

conforms to

...

conforms to

L1

L2

L3

Figure 2: Conformance relations between different levels of meta-ness

factory1 : Factory

Factory

conforms to

Factory : Class

Class

conforms to

Class : Class conforms to

L1

L2

L3

Class DiagramObject Diagram

Figure 3: Conformance is always a relation between an object diagram and a
class diagram

Figure 4: A class diagram conforming to itself (meta-circular).
Conformance-links not shown.
Figure from Andrei Bondarenko’s thesis.

2

Figure 5: Example: conformance-links between meta-model and model

2 Getting started

� Use git to clone the repo https://msdl.uantwerpen.be/git/projects/

muMLE or https://github.com/joeriexelmans/muMLE (mirror)

Note: be sure to clone the repo, and not just download the files. By cloning,
you can easily merge bug fixes that I publish later on.

� Observe the example in examples/conformance/woods.py.

� To run this script, the root of the repo must be in your PYTHONPATH

environment variable.

– On Linux/Mac, run the following command:
export PYTHONPATH=$PYTHONPATH:/absolute/path/to/repo

Also, you’ll need the lark package from PyPI.

� Run this script. When asked to generate PlantUML, select ‘yes’ four
times, and following the instructions, you should be able to generate a
diagram similar to Figure 5.

This diagram shows the meta-model, model, and conformance-links be-
tween their elements. Note that there should also be conformance-links
between the links in the model, and the associations in the meta-model,
but PlantUML cannot render these.

� Observe the script output:

– Does the example model conform to the example meta-model or are
there errors?

– Can you explain each constraint violation?

– Fix the model, so it conforms to the meta-model.

– Generate PlantUML for the updated model (and save it for your
report)

3

https://msdl.uantwerpen.be/git/projects/muMLE
https://msdl.uantwerpen.be/git/projects/muMLE
https://github.com/joeriexelmans/muMLE

3 Overview of assignment

� Once you have gone through the steps above, copy the file woods.py and
name it factory.py.

� Replace the meta-model by a ‘Factory’ meta-model. See section 4 for the
requirements.

� Create two models:

– One conforming model

* you can use a model generated in the previous assignment as
inspiration

– One non-conforming model

* include a list of conformance-errors in your report

For each of the models, render PlantUML.

� Submit a ZIP file containing:

– A small report containing:

1. your answers to the questions in this document

2. a brief explanation of how you implemented the various parts of
the specification (include code fragments)

– Your code (factory.py)

– The PlantUML figures of

* The fixed (conforming) woods-model.

* Your conforming and non-conforming factory-models.

Practical stuff:

� Students work individually.

� Submission via Blackboard.

� Deadline: Tuesday 15 22 October 2024, 23:59.

4 Specification

The specification remains the same as the previous assignment, but a few ex-
tra requirements have been added. Gray text indicates requirements from the
previous assignment (which still need to be implemented).

� A Factory contains at least one Machine.

� A Factory has at least one Worker working for it.

4

� There are exactly three Shifts: morning, afternoon, and night.

� Workers work one or two Shifts. No Workers work three Shifts (this
would be tough for them) and no Workers work zero Shifts.

� A Factory has exactly one Source (to receive parts), and one Sink (to
send out assembled products).

� Connections exist between Machines and the Factory’s Source/Sink:

– Every Machine has one or two inputs, that connect to (a) another
Machine’s output, or (b) the Factory’s Source.

– Every Machine has one or two outputs, that connect to (a) another
Machine’s input, or (b) the Factory’s Sink.

– Cycles among Machines, such as the following, are allowed:

Machine Machine

Machine

feedsTo

feedsTofeedsTo

Cycles between machines are common in industry. For instance,
think of a cooling circuit.

– The Factory’s Source and Sink both must be connected to at least
one Machine, and never more than two Machines.

– A Source cannot be connected directly to a Sink.

� Every Machine is operated by zero or more Workers. A Machine that
is operated by zero Workers, is considered autonomous (it can function
without an operator).

� For every Shift, every non-autonomous Machine (i.e., one that needs an
operator), must have at least one Worker operating it during that Shift.

� Every Worker has a monthly salary, which must be at least 1000 (could
be Euros, Dollars, Belgian Francs, . . .) to comply with minimum wage
legislation.

� The sum of all montly salaries of all Workers of the same Factory must
not exceed 5000. The shareholders are asking for this.

5 Constraint API

When writing constraints, you have the following API at your disposal:

5

Local constraint Global constraint
this: obj current object or link N/A
get name(:obj) : str Get name of object or link
get type name(:obj) : str Get type name of object or link
get value(:obj) : int|str|bool Get value (only works on Integer, String, Boolean objects)
get target(:link) : obj Get target of link
get source(:link) : obj Get source of link
get slot(:obj, attr name:str) : link Get slot-link (link connecting object to a value)
get all instances(type name:str) : list<(str, obj)> Get all instances (tuples (name, object)) of given type
get outgoing(:obj, assoc name:str) : list<link> Get outgoing links of given type
get incoming(:obj, assoc name:str) : list<link> Get incoming links of given type
print(**args) Python’s print function (useful for debugging)

(Note that link is a subtype of obj.)

Here are some examples of API usage:

1 # Get the name of the current object or link:

2 get_name(this)

3

4 # Get all instances (objects or links) that are of the same type as

the current object:

5 get_all_instances(get_type_name(this))

6

7 # Get the value of the ’pay ’-slot of the current object:

8 get_value(get_slot(this , "pay"))

9

10

11 # Print all the unique types that the current object has a ’

hasNeighbor ’-link to:

12

13 # imperative -style:

14 types = set()

15 for neighbor_link in get_outgoing(this , "hasNeighbor"):

16 neighbor = get_target(neighbor_link)

17 neighbor_t = get_type_name(neighbor)

18 ls.add(neighbor_t)

19 print(types)

20

21 # or, more compact but arguably less readable , using a Python list

comprehension:

22 print(set(get_type_name(get_target(neighbor_link))

23 for neighbor_link in get_outgoing(this , "hasNeighbor")))

24

25 # We can count the number of Person -objects in the current model

26 len(get_all_instances("Person"))

27

28 # We can also count the number of ’hasNeighbor ’-links:

29 len(get_all_instances("hasNeighbor"))

6 Tips

� In your (meta-)models, you can only refer to things that have already been
declared. For instance, the following will fail to parse (with a cryptic
error):

obj1:Type1

6

lnk:Link (obj1 -> obj2) # fail

obj2:Type2

To fix this, declare ‘obj2’ first:

obj1:Type1

obj2:Type2

lnk:Link (obj1 -> obj2) # good

� Any object or link can be named, or unnamed. Example of inheritance
link:

:Inheritance(Man -> Animal) # unnamed

bear_inherits_animal:Inheritance (Bear -> Animal) # named

Example of object:

:Bear { ... } # unnamed

billy:Man { ... } # named

All objects must be uniquely named within the context of the diagram.
Unnamed objects get auto-generated unique names behind the scenes.
The only drawback of unnamed things is that you cannot explicitly refer
to them. For something like an inheritance link, this is not a problem.

� A local constraint defined on a type (e.g., Class, AttributeLink or Asso-
ciation) will be checked on every instance of that type (and the type’s
subtypes). So if a type has 10 instances, its constraint code will run 10
times, each time with a different this-object.

For instance, given the following meta-model:

Animal:Class {

abstract = True;

constraint = ‘get_name(this) != "billy"‘; # will fail, billy is Animal

}

Bear:Class {

constraint = ‘get_name(this) != "billy"‘; # OK

}

:Inheritance (Bear -> Animal)

Man:Class

:Inheritance (Man -> Animal)

and the following model:

7

george:Man

billy:Man

bear1:Bear

bear2:Bear

a conformance check will execute the ‘Animal’-constraint 4 times (george,
billy, bear1, bear2).

� Every global constraint is checked only once during a conformance check.

� In the concrete syntax, Python code can be surrounded by a single backtick
` or triple backticks ```. When using a single backtick, the raw string of
code is passed to the Python parser, which may give problems with the
indentation when the code has multiple lines. When using triple backticks,
the entire string is de-indented by the amount of indentation on the first
non-empty line. Triple backticks are recommended when writing multi-
line constraints.

8

	Introduction
	Getting started
	Overview of assignment
	Specification
	Constraint API
	Tips

