
MDE Assignment 3:

(Visual) Concrete Syntax

Joeri Exelmans
contact: joeri.exelmans@uantwerpen.be

October 22, 2024

1 Introduction

Up until this point, in the assignments, we haven’t been very explicit about the distinction between (textual
/ visual) concrete syntax and abstract syntax. Nevertheless, we have already encountered many different
concrete syntaxes, as summarized in Table 1.

When creating a (meta-)model, so far, we have always used some textual syntax. It doesn’t have to be this
way: in model-driven engineering, many tools, such as AToMPM, Itemis, MetaEdit+, StateMate, TAPAAL,
. . . let the user create models using a visual syntax. Meta-modeling tools, such as AToMPM, further allow
the user to define their own visual syntax (choosing icons, colors, styles, etc.). In class, a demo will be given
of AToMPM.

2 Assignment

2.1 Exercises

Moody describes nine principles for designing cognitively effective notations [1]:

� Semiotic Clarity 1:1 correspondence between semantics constructs and graphical symbols

� Perceptual Discriminability visual symbols should be easily and accurately distinguishable from
each other (e.g., circle and rectangle: easy vs. rectangle and square: hard)

� Semantic Transparency use visual symbols, colors, . . . that suggest their meaning (e.g., green =
good/safe, red = bad/danger)

� Manageable Complexity use mechanisms to keep complexity of diagrams manageable (e.g., use visual
containment for hierarchical relationships, and edges for hierarchy-crossing or cyclical relationships)

� (Cognitive Integration) mechanisms to help the reader assemble information from separate diagrams
into a coherent mental representation of the system

� Visual Expressiveness use the full range (extremes) and capacities of visual variables (e.g., black and
white is better than different shades of gray) Concepts that have (sufficiently) different meaning, should

1

mailto:joeri.exelmans@uantwerpen.be


Formalism Textual Concrete Syntax Visual Concrete Syntax

Refinery

(non-editable)

PlantUML

(in our case: auto-generated) (non-editable)

muMLE:
Class

Diagrams
(CD)

meta-model
CD-syntax

meta-model
OD-syntax

two concrete syntaxes, one model

N/A

muMLE:
Object

Diagrams
(OD)

meta-model
OD-syntax

model
OD-syntax

one concrete syntax, two models

N/A

AToMPM:
“woods”-
formalism

N/A

summer
syntax

winter
syntax

two concrete syntaxes, one model

Table 1: Concrete syntaxes seen so far

2



look sufficiently different: use different line thickness, color, arrowhead, pattern, label font weight, . . . to
make concepts easily distinguishable.

� Dual Coding use text to complement graphics, but not to distinguish graphical symbols

� Graphic Economy the number of different graphical symbols should be cognitively manageable

� (Cognitive Fit) use different visual dialects for different tasks and audiences (e.g., intuitive symbols
for novice vs. more abstract symbols for expert)

Observe the 8 cases in Figure 1. For each of the diagram(-fragments), which principle(s) of Moody are
being violated? Motivate your answer.

2.2 Create your own visual concrete syntax

Now open a diagramming tool of your choice (we recommend diagrams.net), and create a diagram containing
the same information as case (5) (the Refinery model), applying Moody’s principles as much as you can.

For an overview of ‘visual expressiveness’ permitted by diagrams.net, see Table 2.

PATTERN / TEXTURE

LINE THICKNESS /
FONT WEIGHT

COLOR

ICON

A B A

B C
C

RELATIONS

SHAPE /
ARROWHEAD /

FONT

NODES EDGES

containmentedges

SIZE

LABELS / TEXT

Abc Abc

Abc Abc

Abc
Abc

Abc Abc

+32483...

Abc
Abc

Table 2: Dimensions of visual variability

3



3 Practical

� Students work individually.

� Submission via Blackboard.

� Deadline: Tuesday 29 October 2024, 23:59.

4 Extra material

� AToMPM “woods”-formalism (not needed to solve the assignment): http://msdl.uantwerpen.be/

people/hv/teaching/MSBDesign/assignments/demo/AToMPM-Woods-Formalism.zip Put the ‘Woods’-
directory in your ’Formalisms’-directory.

References

[1] Daniel L. Moody. The ”physics” of notations: a scientific approach to designing visual notations in
software engineering. In Jeff Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastián Uchitel,
editors, Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume
2, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pages 485–486. ACM, 2010.

4

http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/assignments/demo/AToMPM-Woods-Formalism.zip
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/assignments/demo/AToMPM-Woods-Formalism.zip


f1: Factory m1: Machine

contains

machine1 connectsTo machine2

(1) (2) (3)

(4)

(5)

(7) (8)

m1: Machinef1: Factory

contains

(6)

Figure 1: Bad concrete syntax design

5



: CreateRequirements

cin

cout

reqs

requirements :
xopp

: CreateModel
AndEstimateParameters

cin

cout

cbd

reqs

modelAndParameters
: CBD

: CreateModel
AndEstimateParameters

: DefineCBDModelAndParams

cbd

cout

reqs

prev_cbd

simulationTrace
: TabularData

: RunCBDSimulation

cin

cbd

sim_trace

cout

: ValidateCBDSimulationResults

cin

sim_trace
invalid

reqs

valid

modelAndParams :
CBDcbd

cout

reqs

cin

cin

Legend

name
: Type

Control Flow

Data Flow:
"Consumes"/
"Produces"

Activity

Control
Input/Output
Port

Data
Input/Output
Port

Start of
Workflow

End of
Workflow

name :
Type

Artefact

Figure 2: An example of good concrete syntax design: The FTG+PM language: control-flow elements are
thick and dark-blue, data-flow elements are thin and light-green, making them easily distinguishable.

6


	Introduction
	Assignment
	Exercises
	Create your own visual concrete syntax

	Practical
	Extra material

