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1 Introduction

Up until this point, in the assignments, we haven’t been very explicit about the distinction between (textual
/ visual) concrete syntax and abstract syntax. Nevertheless, we have already encountered many different
concrete syntaxes, as summarized in

When creating a (meta-)model, so far, we have always used some textual syntax. It doesn’t have to be this
way: in model-driven engineering, many tools, such as AToMPM, Itemis, MetaEdit+, StateMate, TAPAAL,
...let the user create models using a visual syntax. Meta-modeling tools, such as AToMPM, further allow
the user to define their own visual syntax (choosing icons, colors, styles, etc.). In class, a demo will be given
of AToMPM.

2 Assignment

2.1 Exercises
Moody describes nine principles for designing cognitively effective notations [I]:
e Semiotic Clarity 1:1 correspondence between semantics constructs and graphical symbols

e Perceptual Discriminability visual symbols should be easily and accurately distinguishable from
each other (e.g., circle and rectangle: easy vs. rectangle and square: hard)

¢ Semantic Transparency use visual symbols, colors, ...that suggest their meaning (e.g., green =
good/safe, red = bad/danger)

¢ Manageable Complexity use mechanisms to keep complexity of diagrams manageable (e.g., use visual
containment for hierarchical relationships, and edges for hierarchy-crossing or cyclical relationships)

¢ (Cognitive Integration) mechanisms to help the reader assemble information from separate diagrams
into a coherent mental representation of the system

e Visual Expressiveness use the full range (extremes) and capacities of visual variables (e.g., black and
white is better than different shades of gray) Concepts that have (sufficiently) different meaning, should
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class Factory {
contains Machine[1..#*] hasMachine
contains Worker[1..*] hasWorker

contains Source[1] hasSeurce
contains Sink[1] hasSink

Refinery
abstract class Connectable {
Connectable[0..2] hasOutput opposite hasInput

(" machines
Connectable[0..2] hasInput opposite hasOutput o nectable

class Source extends Connectable
class Sink extends Connectable.

(non-editable)

package "Meta-model" { Meta-model

class "Bear " as 00006800_0000_00B0_0000_00080000048a {

i
abstract class "Animal " as ©0000000_0000_0000_0000_00000000846d {
¥

class "Man 1..2" as 0980P60_60A0_0PBO_0608_BOREEOABO4I8 {
weight : Integer

00000000_0000_0000_0000_00000000046d <|--
P la‘nt UML 60000000_0000_0000_0008_00000000048a
600B0R06_06BA_B000_0006_00000000046d <|--
60000000_0000_6000_0008_000000000498

60060006_000A_B000_0008_000000000498 "0 .. 6" --> "1 .. *"
60000000_0000_6000_0008_00000000046d : afraid0f
)

weight : Integer

(in our case: auto-generated) (non-editable)

meta-model
OD-syntax
meta-model Animal:Class {
abstract = True;
muMLE: CD-syntax }
Class abstract class Animal BEAT Claes
Diagrams class Bear (Animal) :Inheritance (Bear -> Animal) N/A
Man:Class {
(CD) class Man [1..2] (Animal) Tower_cardinality = 1;
upper_cardinality = 2;
:Inheritance (Man -> Animal)

two concrete syntaxes, one model

meta-model
model
OD-syntax
Aninal:Class { OD-syntax
abstract = True; george:Man {

muMLE: } weight = 15;

}
Object Bear:class billy:Man {
. J :Inheritance (Bear -> Animal) weight = 100; N/A
Diagrams }

Man:Class { bear1:Bear
(OD) lower_cardinality = 1; bear2:Bear
upper_cardinality = 2; :afraidof (george -> bearl)
} :afraidof (george -> bear2)
:Inheritance (Man -> Animal)

one concrete syntazx, two models

summer winter
syntax syntax

AToMPM: 8
“woods”- N/A 4
formalism A

A ‘ A A o

two concrete syntazes, one model

Table 1: Concrete syntaxes seen so far



look sufficiently different: use different line thickness, color, arrowhead, pattern, label font weight, ... to
make concepts easily distinguishable.

e Dual Coding use text to complement graphics, but not to distinguish graphical symbols
¢ Graphic Economy the number of different graphical symbols should be cognitively manageable

e (Cognitive Fit) use different visual dialects for different tasks and audiences (e.g., intuitive symbols
for novice vs. more abstract symbols for expert)

Observe the 8 cases in For each of the diagram(-fragments), which principle(s) of Moody are
being violated? Motivate your answer.

2.2 Create your own visual concrete syntax

Now open a diagramming tool of your choice (we recommend diagrams.net), and create a diagram containing
the same information as case (5) (the Refinery model), applying Moody’s principles as much as you can.
For an overview of ‘visual expressiveness’ permitted by diagrams.net, see
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Table 2: Dimensions of visual variability



3 Practical

e Students work individually.
e Submission via Blackboard.

e Deadline: Tuesday 29 October 2024, 23:59.

4 Extra material

e AToMPM “woods”-formalism (not needed to solve the assignment): http://msdl.uantwerpen.be/
people/hv/teaching/MSBDesign/assignments/demo/AToMPM-Woods-Formalism.zip Put the ‘Woods’-
directory in your 'Formalisms’-directory.
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Figure 1: Bad concrete syntax design



requirements :

: CreateModel
AndEstimateParameters

Figure 2: An example of good concrete syntax design: The FTG+PM language: control-flow elements are
thick and dark-blue, data-flow elements are thin and light-green, making them easily distinguishable.
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