MDE Assignment 3:
(Visual) Concrete Syntax

Joeri Exelmans
contact: joeri.exelmans@Quantwerpen.be

October 22, 2024

1 Introduction

Up until this point, in the assignments, we haven’t been very explicit about the distinction between (textual
/ visual) concrete syntax and abstract syntax. Nevertheless, we have already encountered many different
concrete syntaxes, as summarized in

When creating a (meta-)model, so far, we have always used some textual syntax. It doesn’t have to be this
way: in model-driven engineering, many tools, such as AToMPM, Itemis, MetaEdit+, StateMate, TAPAAL,
...let the user create models using a visual syntax. Meta-modeling tools, such as AToMPM, further allow
the user to define their own visual syntax (choosing icons, colors, styles, etc.). In class, a demo will be given
of AToMPM.

2 Assignment

2.1 Exercises
Moody describes nine principles for designing cognitively effective notations [I]:
e Semiotic Clarity 1:1 correspondence between semantics constructs and graphical symbols

e Perceptual Discriminability visual symbols should be easily and accurately distinguishable from
each other (e.g., circle and rectangle: easy vs. rectangle and square: hard)

¢ Semantic Transparency use visual symbols, colors, ...that suggest their meaning (e.g., green =
good/safe, red = bad/danger)

¢ Manageable Complexity use mechanisms to keep complexity of diagrams manageable (e.g., use visual
containment for hierarchical relationships, and edges for hierarchy-crossing or cyclical relationships)

¢ (Cognitive Integration) mechanisms to help the reader assemble information from separate diagrams
into a coherent mental representation of the system

e Visual Expressiveness use the full range (extremes) and capacities of visual variables (e.g., black and
white is better than different shades of gray) Concepts that have (sufficiently) different meaning, should

mailto:joeri.exelmans@uantwerpen.be

Formalism | Textual Concrete Syntax | Visual Concrete Syntax

class Factory {
contains Machine[1..#*] hasMachine
contains Worker[1..*] hasWorker

contains Source[1] hasSeurce
contains Sink[1] hasSink

Refinery
abstract class Connectable {
Connectable[0..2] hasOutput opposite hasInput

(" machines
Connectable[0..2] hasInput opposite hasOutput o nectable

class Source extends Connectable
class Sink extends Connectable.

(non-editable)

package "Meta-model" { Meta-model

class "Bear " as 00006800_0000_00B0_0000_00080000048a {

i
abstract class "Animal " as ©0000000_0000_0000_0000_00000000846d {
¥

class "Man 1..2" as 0980P60_60A0_0PBO_0608_BOREEOABO4I8 {
weight : Integer

00000000_0000_0000_0000_00000000046d <|--
P la‘nt UML 60000000_0000_0000_0008_00000000048a
600B0R06_06BA_B000_0006_00000000046d <|--
60000000_0000_6000_0008_000000000498

60060006_000A_B000_0008_000000000498 "0 .. 6" --> "1 .. *"
60000000_0000_6000_0008_00000000046d : afraid0f
)

weight : Integer

(in our case: auto-generated) (non-editable)

meta-model
OD-syntax
meta-model Animal:Class {
abstract = True;
muMLE: CD-syntax }
Class abstract class Animal BEAT Claes
Diagrams class Bear (Animal) :Inheritance (Bear -> Animal) N/A
Man:Class {
(CD) class Man [1..2] (Animal) Tower_cardinality = 1;
upper_cardinality = 2;
:Inheritance (Man -> Animal)

two concrete syntaxes, one model

meta-model
model
OD-syntax
Aninal:Class { OD-syntax
abstract = True; george:Man {

muMLE: } weight = 15;

}
Object Bear:class billy:Man {
. J :Inheritance (Bear -> Animal) weight = 100; N/A
Diagrams }

Man:Class { bear1:Bear
(OD) lower_cardinality = 1; bear2:Bear
upper_cardinality = 2; :afraidof (george -> bearl)
} :afraidof (george -> bear2)
:Inheritance (Man -> Animal)

one concrete syntazx, two models

summer winter
syntax syntax

AToMPM: 8
“woods”- N/A 4
formalism A

A ‘ A A o

two concrete syntazes, one model

Table 1: Concrete syntaxes seen so far

look sufficiently different: use different line thickness, color, arrowhead, pattern, label font weight, ... to
make concepts easily distinguishable.

e Dual Coding use text to complement graphics, but not to distinguish graphical symbols
¢ Graphic Economy the number of different graphical symbols should be cognitively manageable

e (Cognitive Fit) use different visual dialects for different tasks and audiences (e.g., intuitive symbols
for novice vs. more abstract symbols for expert)

Observe the 8 cases in For each of the diagram(-fragments), which principle(s) of Moody are
being violated? Motivate your answer.

2.2 Create your own visual concrete syntax

Now open a diagramming tool of your choice (we recommend diagrams.net), and create a diagram containing
the same information as case (5) (the Refinery model), applying Moody’s principles as much as you can.
For an overview of ‘visual expressiveness’ permitted by diagrams.net, see

NODES EDGES LABELS / TEXT

=3 O MDA S e

COLOR / / AbC AbC
] S S Abc Abe
SIZE [} D / / Z Abc AbC

PR Y ', ’
PATTERN / TEXTURE ? 7 / R
. ﬁ /4 1’ c':
% e > > | %0+32483..
A > 8B A
RELATIONS B c
c
edges containment

Table 2: Dimensions of visual variability

3 Practical

e Students work individually.
e Submission via Blackboard.

e Deadline: Tuesday 29 October 2024, 23:59.

4 Extra material

e AToMPM “woods”-formalism (not needed to solve the assignment): http://msdl.uantwerpen.be/
people/hv/teaching/MSBDesign/assignments/demo/AToMPM-Woods-Formalism.zip Put the ‘Woods’-
directory in your 'Formalisms’-directory.

References

[1] Daniel L. Moody. The ”physics” of notations: a scientific approach to designing visual notations in
software engineering. In Jeff Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastian Uchitel,
editors, Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume
2, ICSE 2010, Cape Town, South Africa, 1-8 May 2010, pages 485-486. ACM, 2010.

http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/assignments/demo/AToMPM-Woods-Formalism.zip
http://msdl.uantwerpen.be/people/hv/teaching/MSBDesign/assignments/demo/AToMPM-Woods-Formalism.zip

M __ @) @3)

) —contains> -contains—>,

m1: Machine

f1: Factory, m1: Machine f1: Factory,

machine1 connectsTo machine2 (4)

hassin

» Connectable
® Machine
® Connectable
® Wachine

(5)

[Forest

[Animai

+ contains

afraidof

check GC_total_weight_small_enough on validate

Bear =3

Teight =70

(7) (8)

Figure 1: Bad concrete syntax design

requirements :

: CreateModel
AndEstimateParameters

Figure 2: An example of good concrete syntax design: The FTG+PM language: control-flow elements are
thick and dark-blue, data-flow elements are thin and light-green, making them easily distinguishable.

regs

cbd

regs

prev_cbd |

invalid

+ ValidateCBDSimulationResults

valid

: CreateModel
AndEstimateParameters

cout

Legend AN

Start of
Workflow

End of
Workflow
—> Control Flow

Data Flow:
——> "Consumes"/
"Produces”

Activity

Artefact

Control
Input/Output
Port

Data
Input/Output
Port

	Introduction
	Assignment
	Exercises
	Create your own visual concrete syntax

	Practical
	Extra material

