
MDE Assignment 5:

Operational Semantics - Rule-Based Model Transformation

Joeri Exelmans
contact: joeri.exelmans@uantwerpen.be

November 21, 2024

1 Introduction

In this assignment, we will implement the same operational semantics of the ‘port’-DSL from the previous
assignment, but this time, using rule-based model transformations. During simulation, there is still a design
model (that doesn’t change), and a runtime model (that changes after every execution step). The only
difference is how the execution steps are defined: namely as a set of transformation rules, as opposed to
Python code.

A transformation rule classically contains three parts:

Left-Hand Side (LHS) A pattern that must occur, for the rule to produce a match.

Negative Application Condition (NAC) A pattern that must not occur, for the rule to produce a match.

Right-Hand Side (RHS) Describes what the matched pattern should look like after executing the rule.

LHS and NAC together define when a rule can fire. First, the LHS-pattern is searched for in the model
that is being transformed (this model is sometimes called the host graph). For every LHS-match, the matcher
attempts to grow the match with the elements defined in the NAC. Only if the latter does not succeed, does
the entire rule match.

LHS and RHS together define what happens when the rule fires: Any element that occurs in the LHS,
but not in the RHS, is deleted. Any element that does not occur in the LHS, but occurs in the RHS, is
created. Any element that occurs in both LHS and RHS is left untouched (with the exception of attributes,
which can be updated, as we will see).

The LHS-, NAC- and RHS-patterns that a transformation rule consists of, are models too: they are
instances of the RAMified runtime model. RAMification turns the meta-model of the host graph into a new,
slightly different meta-model: for instance:

� the lower-cardinalities for all types become zero

� abstract classes become concrete

� the types of attributes are turned into ActionCode (LHS/NAC: boolean expression indicating whether
to match, RHS: expression of new value)

� every class gets an additional condition-attribute

1

mailto:joeri.exelmans@uantwerpen.be

DSL M eta-M odel

RAMified DSL Meta-Model

Bear

Animal

Man 1..2

weight : Integer

GlobalCondition

condition : ActionCode

RAM_Animal

condition : ActionCode

RAM_Bear

condition : ActionCode

RAM_Man 0..2

condition : ActionCode
RAM_weight : ActionCode

afraidOf

1 .. *

RAM_afraidOf

0 .. *

RAMifies

RAMifies RAMifies RAMifies

Figure 1: RAMification of our ‘woods’-metamodel.

� a GlobalCondition-class is added

RAMification can be done automatically. Figure 1 shows an auto-generated RAMified meta-model of our
‘woods’-formalism.

2 Assignment

See previous assignment for introduction to the Port-DSL.

2.1 Specification of Semantics

Note: this specification has not changed since the previous assignment.
The precise semantics of our language are as follows:

� A ship can move along a connection, only:

– if there is at least one ship in the source of the connection, with some exceptions:

* A Generator can be considered a special kind of source, always having ships available.

* A ship can only leave a Berth if it has been served.

– if there is enough capacity in the target/sink of the connection.

– if no ship has moved yet over the connection, during the current time step.

� Further, a connection only becomes ‘active’ if all connections after it have had a chance to make a
move.

2

n=1

cap = 3

inboundPassagegenerator

outboundPassage

cap = 1

inboundBerth1

cap = 1

inboundBerth2

cap = 1

berth1

cap = 1

berth2

cap = 1

outboundBerth1

cap = 1

outboundBerth2

served

waiting

Figure 2: Our (design) model.

– For instance, in Figure 2, the connection ‘outboundPassage’ → ‘served’ occurs after ‘outbound-
Berth2’ → ‘outboundPassage’. The former will thus have priority.

� Along an ‘active’ connection, if a ship can move, it must move, and otherwise, the connection is skipped
(marking it as ‘moved’ without having moved a ship).

� If a ship is at a Berth, and the status of the Berth is “unserved”, a worker may be assigned to the
Berth, but only if:

– There is a ‘canOperate’-link from the WorkerSet to the Berth

– The WorkerSet still has a worker available. In other words, the number of outgoing ‘isOperating’-
links must be smaller than the size (‘numWorkers’) of the WorkerSet.

� If none of the above actions are possible anymore, a time step ends, having the following effects:

– The current time is incremented.

– For every worker that is operating a Berth, the Berth’s status changes to “served”, and the worker
stops operating the Berth. (In the next time step, the worker can be assigned again to a Berth)

– The ‘moved’ flag of every connection is reset to False.

3 Getting started

� Work continues in the ‘muMLE’ repository. Do a ‘git pull’ to get the latest version.

– https://msdl.uantwerpen.be/git/projects/muMLE

– https://github.com/joeriexelmans/muMLE (mirror)

3

https://msdl.uantwerpen.be/git/projects/muMLE
https://github.com/joeriexelmans/muMLE

� In the directory semantics/operational/port, the following files are of interest:

– Files you should not edit:

* rulebased runner.py The main runner. Almost identical to runner.py, but instead derives
actions from rules defined in rulebased sem.py.
Hint: You can switch between interactive and automated simulation by changing the decision maker

parameter of the Simulator class.
Hint: You can also switch the renderer (Graphviz or textual).

* models.py This file contains the (meta-)models for design and runtime state.
Hint: The meta-models contain many constraints that are automatically checked after every
execution step. If an execution step makes the runtime state non-conforming, then you’ve
made a mistake!
Hint: For testing, you can temporarily alter the initial runtime model, to start simulation
from a different state (e.g., one that already has ships in some places).

– Files you should edit:

* rules/ In this directory, you will put your model transformations.

* rulebased sem.py In this file, you will load your model transformations, and possibly define
a priority between them. Rules of lower priority can only fire when no rules of higher priority
can fire. You will also implement a termination condition, in the form of a pattern (not a
rule). Look for ‘TO IMPLEMENT’.

4 API

The same API that we are already familiar with, is available in the attributes of objects in LHS / NAC /
RHS patterns:

4

Availability in Context
Meta-Model
Constraint

Model Trans-
formation Rule

Local Global
NAC
LHS

RHS
OD-
API

Meaning

Querying
this :obj ✓ ✓ ✓ Current object or link
get name(:obj) :str ✓ ✓ ✓ ✓ ✓ Get name of object or link
get(name:str) :obj ✓ ✓ ✓ ✓ ✓ Get object or link by name (inverse of get name)
get type(:obj) :obj ✓ ✓ ✓ ✓ ✓ Get type of object or link
get type name(:obj) :str ✓ ✓ ✓ ✓ ✓ Same as get name(get type(...))

is instance(:obj, type name:str
[,include subtypes:bool=True]) :bool

✓ ✓ ✓ ✓ ✓
Is object instance of given type
(or subtype thereof)?

get value(:obj) :int|str|bool ✓ ✓ ✓ ✓ ✓
Get value (only works on Integer,
String, Boolean objects)

get target(:link) :obj ✓ ✓ ✓ ✓ ✓ Get target of link
get source(:link) :obj ✓ ✓ ✓ ✓ ✓ Get source of link
get slot(:obj, attr name:str) :link ✓ ✓ ✓ ✓ ✓ Get slot-link (link connecting object to a value)
get slot value(:obj,
attr name:str) :int|str|bool

✓ ✓ ✓ ✓ ✓ Same as get value(get slot(...)))

get all instances(type name:str
[,include subtypes:bool=True]

) :list<(str, obj)>
✓ ✓ ✓ ✓ ✓

Get list of tuples (name, object)
of given type (and its subtypes).

get outgoing(:obj,
assoc name:str) :list<link>

✓ ✓ ✓ ✓ ✓ Get outgoing links of given type

get incoming(:obj,
assoc name:str) :list<link>

✓ ✓ ✓ ✓ ✓ Get incoming links of given type

has slot(:obj, attr name:str) :bool ✓ ✓ ✓ ✓ ✓ Does object have given slot?

matched(label:str) :obj ✓ ✓
Get matched object by its label
(the name of the object in the pattern)

Modifying
delete(:obj) ✓ ✓ Delete object or link
set slot value(:obj, attr name:str,
val:int|str|bool)

✓ ✓
Set value of slot.
Creates slot if it doesn’t exist yet.

create link(link name:str|None,
assoc name:str, src:obj, tgt:obj) :link

✓ ✓
Create link (typed by given association).
If link name is None, name is auto-generated.

create object(object name:str|None,
class name:str) :obj

✓ ✓
Create object (typed by given class).
If object name is None, name is auto-generated.

If there is an API function that you would like to see added, contact me.

5 Tips

� To update a slot, the slot must occur in both LHS and RHS. If the slot only occurs in RHS, it will be
created (possibly leading to an object having two attributes with the same name).

� Items in NAC/LHS/RHS are matched by their name in the pattern. Therefore, it is best to not use
anonymous objects/links in patterns.

� Multiple correct solutions exist. The RHS of every rule can contain arbitrary code (in a GlobalCondition).
Code is needed sometimes because model transformation rules by themselves are less expressive than
code1. However, try to use not too much code! Solutions that are easy to explain / understand are
favored.

� NACs are optional. If needed, a rule can have more than one NAC. To specify more than one NAC,
the NACs must be named r rule nac.od, r rule nac2.od, r rule nac3.od, . . .

1For this reason, extensions, such as amalgamated rules, have been suggested.

5

� Beware that an empty NAC (i.e., a NAC that exists as a file, but contains no elements) will always
match, therefore causing the entire rule to never match.

6 Practical

� Students work individually.

� Submit, via Blackboard, a ZIP file containing:

– your rules directory, containing the transformation rules

– your rulebased sem.py file

– an execution trace (copy-paste terminal output)

– a small report, where you explain the different rules you created, and the termination condition
pattern.

� Deadline: Tuesday 26 November 2024, 23:59.

7 Extra material

Examples of model transformation in muMLE:

� The examples/woods/opsem rulebased.py implements the semantics of our ‘woods’-formalism as a
bunch of transformation rules.

� In examples/cbd, you can find an implementation of a minimal Causal Block Diagrams (CBD) lan-
guage, and its semantics, with transformation rules. It includes an example model that computes
Fibonacci numbers.

� In examples/petrinet, you’ll find a Petri Net language, its semantics implemented with (only 1) model
transformation rule.

� Note that the distinction between runtime model and design model is not necessary for model trans-
formation: all meta-models can be RAMified, and their instances transformed. For instance, Figure 1
shows the RAMification of the design model of the woods-formalism.

6

	Introduction
	Assignment
	Specification of Semantics

	Getting started
	API
	Tips
	Practical
	Extra material

