Foundations of Modelling and Simulation

Hans Vangheluwe

Modelling, Simulation and Design Lab (MSDL)

Department of Mathematics and Computer Science, University of Antwerp, Belgium

School of Computer Science, McGill University, Montréal, Canada

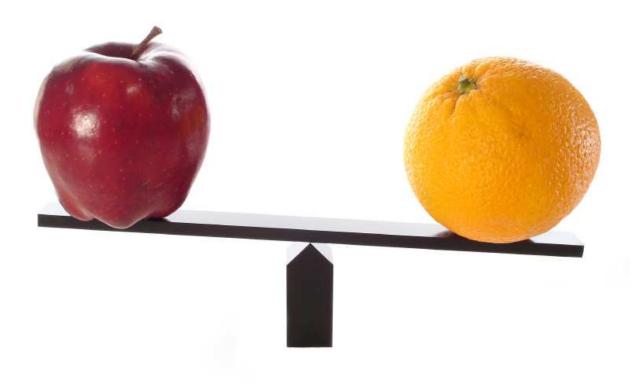
Hierarchy of System Specification of Structure and Behaviour

- Basis of System Specification: sets theory, time base, segments and trajectories
- Hierarchy of System Specification (causal, deterministic)
 - 1. I/O Observation Frame
 - 2. I/O Observation Relation
 - 3. I/O Function Observation
 - 4. I/O System
- Multicomponent Specifications
- Non-causal models

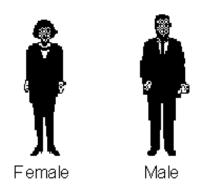
ref: Wayne Waymore, Bernard Zeigler, George Klir, ...

Set Theory

Properties:

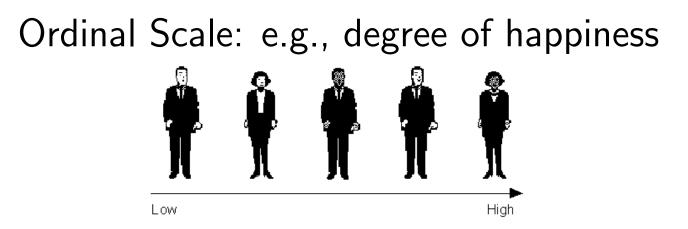

$$\{1, 2, \dots, 9\}$$
$$\{a, b, \dots, z\}$$
$$\mathbb{N}, \mathbb{N}^+, \mathbb{N}^+_{\infty}$$
$$\mathbb{R}, \mathbb{R}^+, \mathbb{R}^+_{\infty}$$

 $EV = \{ARRIVAL, DEPARTURE\}$ $EV^{\phi} = EV \cup \{\phi\}$


Structuring:

$$A \times B = \{(a, b) | a \in A, b \in B\}$$
$$G = (E, V), V \subseteq E \times E$$

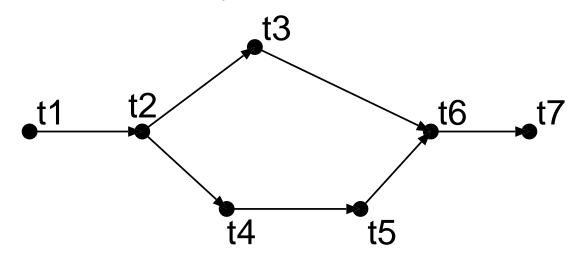
Comparing things


Nominal Scale: e.g., gender

A scale that assigns a *category label* to an individual. Establishes no explicit ordering on the category labels.

Only a notion of *equivalence* "=" is defined with properties:

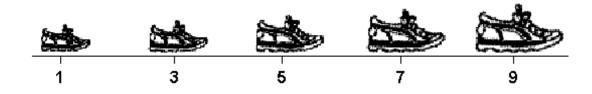
- 1. Reflexivity: $x = x \lor x \neq x$.
- 2. Symmetry of equivalence: $x = y \Leftrightarrow y = x$.
- 3. Transitivity: $x = y \land y = z \rightarrow x = z$.


A scale in which data can be *ranked*, but in which no arithmetic transformations are meaningful. It is meaningless to talk about difference (distance).

In addition to equivalence, a notion of order < is defined with properties:

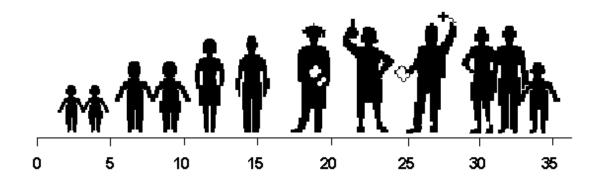
- 1. Symmetry of equivalence: $x = y \Leftrightarrow y = x$.
- 2. Asymmetry of order: $x < y \rightarrow y \not< x$.
- 3. Irreflexivity: $x \not< x$.
- 4. Transitivity: $x < y \land y < z \rightarrow x < z$.

Partial ordering


The ordering may be *partial* (some data items cannot be compared).

The ordering may be *total* (all data items can be compared).

$$\forall x, y \in X : x < y \lor y < x \lor x = y$$


Interval Scale: e.g., Shoe Size

A scale where *distances* between data are meaningful. On interval measurement scales, one unit on the scale represents the *same magnitude* of the characteristic being measured across the whole range of the scale. Interval scales do not have a "true" zero point, however, and therefore it is not possible to make statements about how many times higher one value is than another.

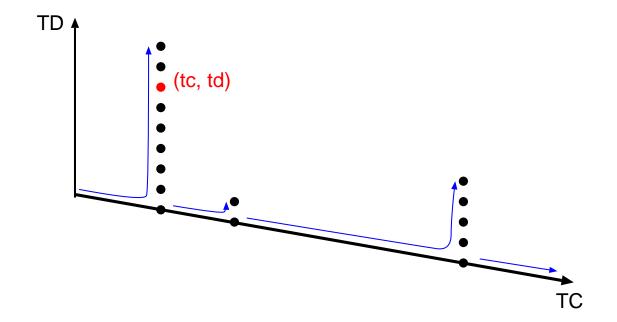
In addition to equivalence and order, a notion of *interval* is defined. The choice of a zero point is arbitrary.

Ratio Scale: e.g., age

Both *intervals* between values and *ratios* of values are meaningful. A meaningful *zero* point is known. "A is twice as old as B".

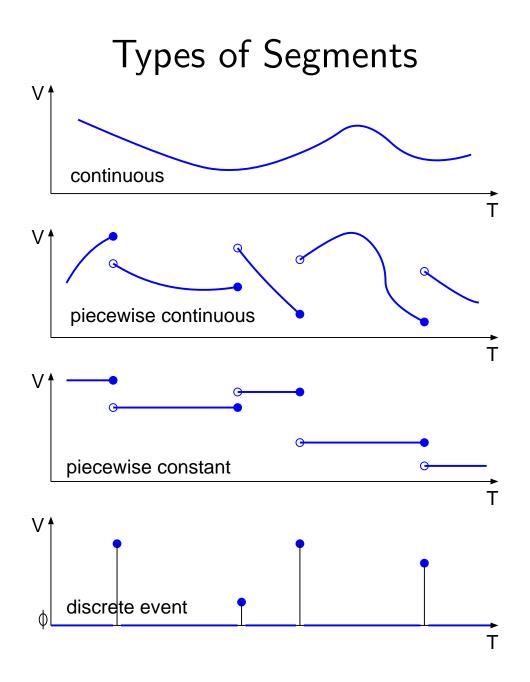
Time Base

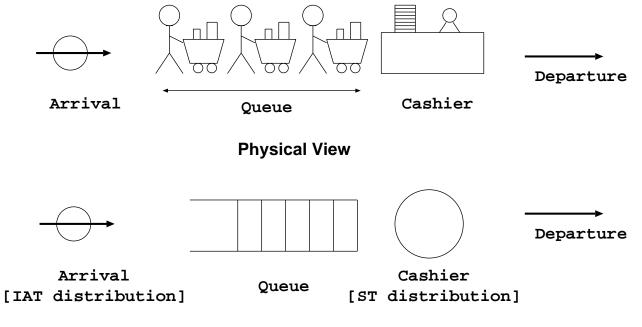
• Simulation of **Dynamic** Systems: irreversible passage of *time*.



- Time Base *T*:
 - $\{NOW\}$ (instantaneous)
 - \mathbb{R} : continuous-time
 - \mathbb{N} or isomorphic: *discrete-time*
- Ordering:
 - Ordinal Scale (possibly partial ordering, for concurrency)
 - Interval Scale
 - Ratio Scale

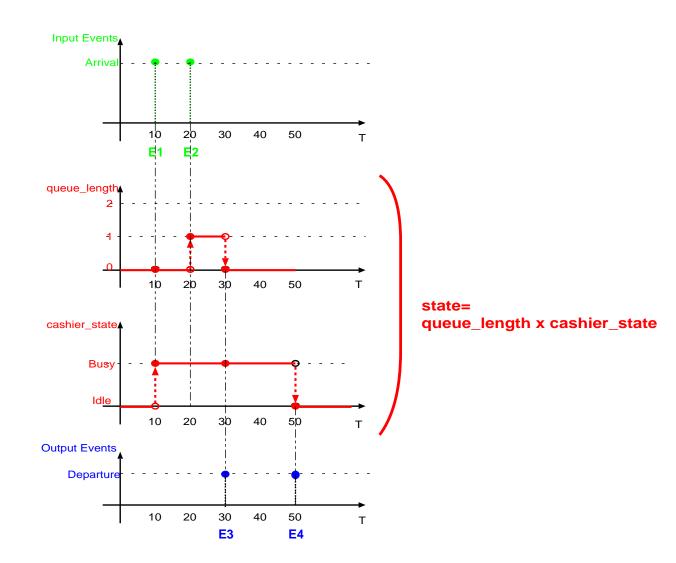
Time Bases for hybrid system models


Time Bases for hybrid system models


"nested time" for nested experiments.

$\mathsf{Behaviour} \equiv \mathsf{Evolution} \text{ over Time}$

- With time base, describe evolution over time
- Time function, **trajectory**, signal: $f: T \rightarrow V$
- Restriction to $T' \subseteq T$ $f|T':T' \to V$, $\forall t \in T': f|T'(t) = f(t)$
 - Past of f: $f|T_{t\rangle}$
 - Future of f: $f|T_{\langle t}$
- Restriction to an interval: segment $\omega : \langle t_1, t_2 \rangle \rightarrow V$



Cashier-Queue System

Abstract View

Trajectories

I/O Observation Frame (causal)

 $O = \langle T, X, Y \rangle$

- T is *time-base*: \mathbb{N} (discrete-time), \mathbb{R} (continuous-time)
- X input value set: \mathbb{R}^n, EV^{ϕ}
- Y output value set: system response

I/O Relation Observation

 $IORO = \langle T, X, \Omega, Y, R \rangle$

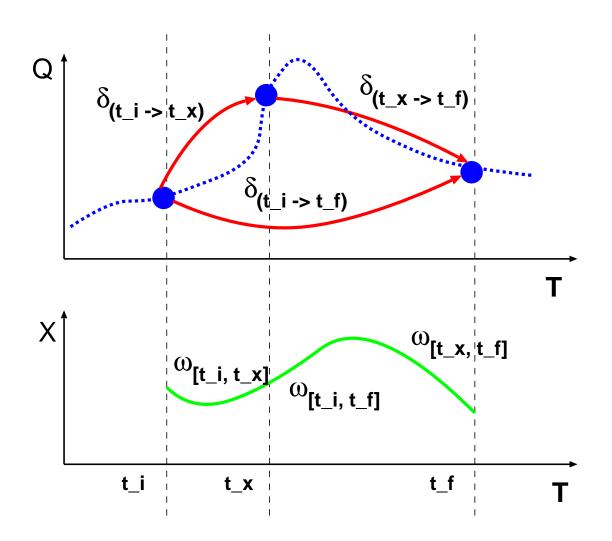
- $\langle T, X, Y \rangle$ is Observation Frame
- Ω is the set of all possible input segments
- R is the I/O relation $\Omega \subseteq (X,T), R \subseteq \Omega \times (Y,T)$ $(\omega,\rho) \in R \Rightarrow dom(\omega) = dom(\rho)$
- $\omega : \langle t_i, t_f \rangle \to X$: input segment
- $\rho: \langle t_i, t_f \rangle \to Y$: output segment
- note: not really necessary to observe over same time domain

I/O Function Observation

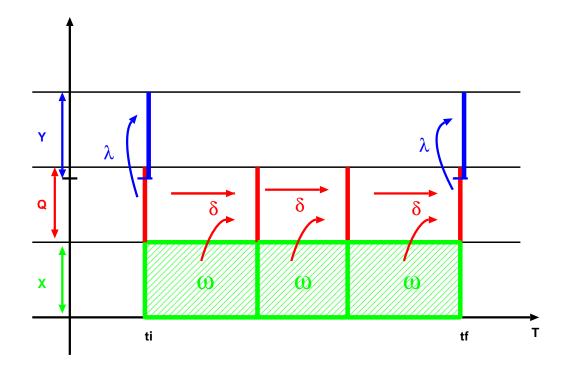
 $IOFO = \langle T, X, \Omega, Y, F \rangle$

- $\langle T, X, \Omega, Y, R \rangle$ is a Relation Observation
- Ω is the set of all possible input segments
- F is the set of I/O functions
 f ∈ F ⇒ f ⊂ Ω × (Y,T), where
 f is a function such that dom(f(ω)) = dom(ω)
- $f = initial \ state$: **unique** response to ω
- $R = \bigcup_{f \in F} f$

I/O System


- From **Descriptive Variables** (properties) to **State**.
- State summarizes the past behaviour of the system.
- Future is uniquely determined by
 - current state
 - future input

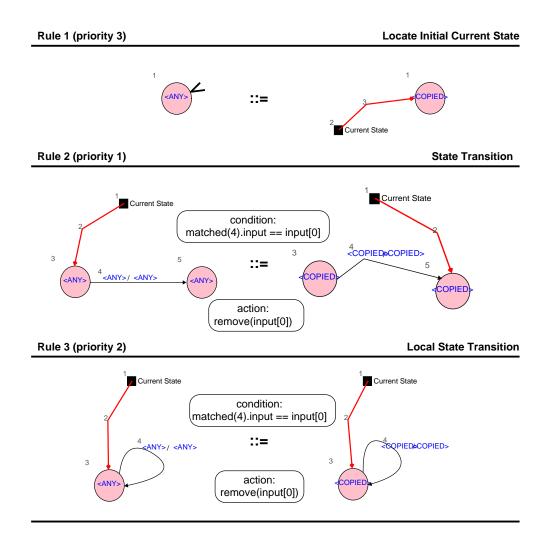
Ttime base
$$X$$
input set $\omega: T \to X$ input segment Q state set $\delta: \Omega \times Q \to Q$ transition function Y output set $\lambda: Q \to Y$ (or $Q \times X \to Y$)output function


 $SYS = \langle T, X, \Omega, Q, \delta, Y, \lambda \rangle$

 $\forall t_x \in [t_i, t_f] : \delta(\omega_{[t_i, t_f]}, q_i) = \delta(\omega_{[t_x, t_f]}, \delta(\omega_{[t_i, t_x]}, q_i))$

Composition Property

Simulator: step through time



Formalism classification based on general system model

	T: Continuous	T: Discrete	T: { NOW }
Q: Continuous	ODE, DEVS	Difference Eqns. (DTSS)	Algebraic Eqns.
Q: Discrete	Discrete-event	Finite State Automata	Integer Eqns.

Basis for general, standard software architecture of simulators Further classifications based on structure of formalisms (in particular of δ)

Rule-based specification of δ

