Petri Nets

1. Finite State Automata

Petri net notation and definition (no dynamics)
Introducing State: Petri net marking

Petri net dynamics

Capacity Constrained Petri nets

S o AN

Petri net models for . ..

e FSA

e Nondeterminism

e Data Flow Computation

e Communication Protocols
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7. Queueing Systems

8. Petri nets vs. State Automata

9. Analysis of Petri nets

Boundedness

Liveness and Deadlock
State Reachability
State Coverability
Persistence

Language Recognition

10. The Coverability Tree

11. Extensions: colour, time, ...
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Finite State Automaton

E is a finite alphabet

X is a finite state set

(E,X,f,$07F>

f Is a state transition function,

f: XxFE—-X

o Is an initial state, g € X

e [ is the set of final states

Dynamics (z’ is next state):

Hans Vangheluwe

hv@cs.mcgill.ca

v’ = f(x,e)
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FSA graphical /visual notation: State Transition
Diagram
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FSA Operational Semantics

Rule 1 (priority 3) Locate Initial Current State

Rule 2 (priority 1) State Transition

Current State

Current State

condition:
matched(4).input == input[0]

3

4
3 5 <COPIEDECOPIED>

4
<ANY> <ANY>/ <ANY> ;@
action:
remove(input[0])

Rule 3 (priority 2) Local State Transition

1 1

Current State
condition:
matched(4).input == input[0]

4 =

4
<ANY>/ <ANY> SQPIEDECOPIED>
3
action: ;
remove(input[0])

Current State
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Simulation steps

— AToM3 v0.2.1 using: AniteStateAutomata 0 >
Fle Model Transformation Graphics |
Finite Statesutomata | Model ops Edit entity | Connect | Delete | Insert model | Expand model | Exit |
Visual ops Smooth | Insert point | Delete point | Change connector |
— Edit value o
new | edit | celete ||
]
1
]
£
oK cancel |
— Graph- Grammar execution controls B
Executing Graph- Grammar: FSASimulator
Last executed rule:
Step continuous | Close h
I :
P~ | -
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input O

Rule 1 Rule 2
llllllllll> llllllllll>
Current State Current State
input 1 input O
Rule 2 Rule 2
lllllll’ llllllllll>

Current State

Current State

end of input

Final Action
lllIlllllllllllllllllllllll’ "Accept Input"
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State Automaton

(E7X7F7fax0)

FE 1s a countable event set

X Is a countable state space

['(x) is the set of feasible or enabled events

re X, I'(x) CFE

f Is a state transition function,
f: X x FE — X, only defined for e € I'(x)

o Is an initial state, g € X

(£, X,T, f)

omits xg and describes a class of State Automata.

Hans Vangheluwe
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State Automata for Queueing Systems

o XSRS —

= R

Arrival

o

Arrival
[ 1 AT distribution]

hv@cs.mcgill.ca

Departure
QJeue Cashi er
Physical View
—_—
Departure

Queue Cashi er
[ ST distribution]

Abstract View
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State Automata for Queueing Systems:
customer centered

GLLIGILLL

E ={a,d}
X =1{0,1,2,...}
['(x) = {a,d},Vz > 0;T(0) = {a}
flr,a) =2+ 1,V >0
flr,d) =2 — 1,V >0
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State Automata for Queueing Systems:
server centered (with breakdown)
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State Automata for Queueing Systems: server
centered (with breakdown)

E ={s,c,b,r}

Events: s denotes service starts, ¢ denotes service completes, b
denotes breakdown, r denotes repair.

X ={I,B,D}
State: I denotes idle, B denotes busy, D denotes broken down.
I(I) = {s},I(B) ={c,b},['(D) = {r}

f(I,S):B,f(B,C):I,f(B,b):D,f(D,T):I
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Limitiations/extensions of State Automata

Adding time ?
Hierarchical modelling 7
Concurrency by means of X

States are represented explicitly

Specifying control logic, synchronisation ?

hv@cs.mcgill.ca
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Petri nets

Formalism similar to FSA
Graphical /Visual notation
C.A. Petri 1960s
Additions to FSA:

— Explicitly (graphically/visually) represent when event is enabled

— describe control logic
— Elegant notation of concurrency

— Express non-determinism

hv@cs.mcgill.ca
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Petri net notation and definition (no dynamics)

(P, T,A,w)

e P={p1,pa,...} is a finite set of places
o T'={t1,ts,...} is a finite set of transitions

e AC(PxT)U(T x P) is a set of arcs

e w: A — Nisa weight function

Note: no need for countable P and T'.
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Derived Entities

I(t;) =A{pi: (pi,t;) € A} set of input places to transition t;

(= conditions for transition)

O(t;) = {p: : (t;,pi) € A} set of output places from transition ¢,

(= affected by transition)

Transitions = events

similarly: input- and output-transitions for p;

graphical /visual representation: Petri net graph (multigraph)

hv@cs.mcgill.ca
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Example Petri net

OH’“"«-._Z t H_Z0
| ——0O

o P = {H27027H20}

o T'={t}
o A={(Haz,t),(02,1),(t, H20)}
¢ w((H%t)) — 27w((027t)) =1, 7w((t7H20)) =2
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Pure Petri net

e No self-loops:
/Epi - P,tj cT: (pi,tj) c A, (tj,pi) c A

e Can convert impure to pure Petri net
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Impure to Pure Petri net

ﬂ [

'LJQ L
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Introducing State: Petri net Markings

Conditions met ? Use tokens in places

Token assignment = marking x

A marked Petri net

xo Is the initial marking

r: P —N

(P7 T7 A7 w, ZI?())

The state x of a marked Petri net

Number of tokens need not be bounded (cfr. State Automata

states).

sz:[x(pl),$(p2),..-,x(Pn)]

hv@cs.mcgill.ca
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State Space of Marked Petri net

e All n-dimensional vectors of nonnegative integer markings
X =N"
e Transition t; € T' is enabled if

r(pi) > w(ps,tj), Vs € 1(t;)
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Example with marking, enabled

H_Z0

®
[
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Petri Net Dynamics

State Transition Function f of marked Petri net (P, T, A, w, xg)
f:N*xT —N"
is defined for transition t; € 1" if and only if
x(pi) = w(pi, t;),Vpi € 1(t;)
If f(x,t;) is defined, set X" = f(x,t;) where
' (pi) = x(pi) — w(pi, tj) + w(ty, pi)
e State transition function f based on structure of Petri net

e Number of tokens need not be conserved (but can)
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Example “firing”

e Use PNS tool http://www.ee.uwa.edu.au/ braunl/pns/

e Select Sequential Manual execution

e Transition: [2,2,0] — [0, 1, 2]

H_I
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Example

D)

e order of firing not determined (due to untimed model)
o selfloop

e ‘dead’ net
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Conflict, choice, decision

ploace

()

tl t2

O O
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Semantics

e sequential vs. parallel

e Handle nondeterminism:

1.

User choice

2. Priorities
3.
4

. Reachability Graph (enumerate all choices)

Probabilities (Monte Carlo)

hv@cs.mcgill.ca
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Application: Critical Section
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Reachability Graph
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Algebraic Description of Dynamics

e Firing vector u: transition j firing
u=10,0,...,1,0,...,0]
e Incidence matrix A :
aji = w(ts, p;) — w(ps,t;)

e State Equation
x' = x + uA
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Infinite Capacity Petri net

qenerate tl
o

e Add Capacity Constraint: K : P — N

e New transition rule
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Can transform to infinite capacity net

1. Add complimentary place p’ with initial marking zo(p’) = K(p)

2. Between each transition ¢ and complimentary places p’
e add arcs (t,p’) or (p',t) where
o w(t,p') =w(p,t)
o w(p',t) =w(t,p)
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Capacity Constrained Petri net

K
.
s
pll' rfE ‘ngl / pi t4

y D=0 —
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Equivalence proof: use Reachability Graph

[p1K2 , p2K1]
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Petri net as State Machine

deplic 15

— O
depEc
ﬂc

delﬁc

aetEUicd/_/_/{
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Representing a Petri net as a State Machine

Construct Reachability Graph

Reachability Graph is State Machine

States are tuples (p1,p2, ..., Pn)
Events correspond to ¢; firing

May be infinite

hv@cs.mcgill.ca

Modelling and Simulation: Petri Nets

36,69



Representing a State Machine as a Petri net

1. no output

2. with output

= automatic (though inefficient) transformation
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FSA without output
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FSA with output

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Petri Nets 39/69



Hans Vangheluwe

Petri net models for Queueing Systems

o FIRIEIC] —

Departure
Arrival Queue Cashi er
Physical View
—_—
6 } Departure
Arrival Queue Cashi er
[1 AT distribution] [ ST distribution]

Abstract View

Capacity Constraints for Resource Conservation
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Simple Server/Queue Model

,/\:rriual

e
O W
e

4
O
L
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Model departure explicitly

ﬁ_
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Model Server Breakdown

frrival

&

Fy
-1+1

arpjval

L
O

o

breakdown dn n
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Modular Composition: Communication Protocol

Build incrementally:

1. Single transmitter: FSA vs. Petri net

2. Two transmitters competing for channel
Pros/Cons of Petri net models (depends on goals !):

e Petri net is more complex than FSA for single transmitter

e More insight

e Incremental modelling

e Modular modelling

e [ntuitive modelling of concurrency
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Single Transmitter FSA

ack received

transmit

arr

arr

Idle Message present Transmitting
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Single Transmitter Petri net

hv@cs.mcgill.ca Modelling and Simulation: Petri Nets
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Concurrent, Non-interacting Transmitters
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Concurrent, Interacting Transmitters
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Analysis of Petri nets

Analysis of logical or qualitative behaviour.

Resource sharing = fair usage of resources:

Hans Vangheluwe

Boundedness
Conservation

Liveness and Deadlock
State Reachability
State Coverability
Persistence

Language Recognition

hv@cs.mcgill.ca
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Boundedness

Example: upper bound on number of customers in queue.

Definition: A place p; € P in a Petri net with initial state xg is

k—bounded or k—safe if

x(p;) < k for all states in all possible sample paths.

A 1—bounded place is called safe.

If a place is k—bounded for some k, the place is bounded.

If all places are bounded, the Petri net is bounded.

hv@cs.mcgill.ca
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Bounded vs. Unbounded

bounded

(e | =)

unbounded

(D | =
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Conservation

Token represents resource, process, .. .

,_/—/—"\irr*iual
I

.
O ()

e

-

B _
seLcnmpl

L

Sum Busy + Idle tokens must be constant for all states in all sample
paths
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Conservation, weighted sum

2 Transm + ldle + trsChannel = constant
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Conservation

A Petri net with initial state xg is
conservative with respect to v = [y1,v2, -, Vn] if

?:1%513(2%') = constant

for all states in all possible sample paths.
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Liveness and Deadlock

e Cyclic dependency = wait indefinitely
e Deadlock

e Deadlock avoidance: avoid certain states in sample paths
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Deadlock in Queueing system with Rework

eeeeeeee

(QueueFree, Queuel, Rework] = (0,1, 1]
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Deadlock resolved

acg rece jected

Degmrt depart.

\d&‘iled
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Liveness

Given initial state xg, a transition in a Petri net is:

Hans Vangheluwe

LO-live (dead): if the transition can never fire.

L1-live: if there is some firing sequence from xg such that the

transition can fire at least once.

L2-live: if the transition can fire at least k times for some given

positive integer k.

L3-live: if there exists some infinite firing sequence in which the

transition appears infinitely often.

L4-live: if the transition is L1-live for every possible state reached

from xg.

hv@cs.mcgill.ca Modelling and Simulation: Petri Nets
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Liveness example

o t1 is L1-live;
e {2 is dead;
25 e t3 s L3-live, not L4-live.
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State Reachability

e A state x in a Petri net is reachable from a state xq if there exists
a sequence of transitions starting at xy such that the state
eventually becomes x.

e Build/use reachability graph.

e Deadlock avoidance is a special case of reachability.
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State Coverability

e |n a Petri net with initial state xq, a state y is coverable if there
exists a sequence of transitions starting at xg such that the state

eventually becomes x and x(p;) > y(p;).

e Related to L1-liveness: minimum number of tokens required to

enable a transition.
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Persistence

e More than one transition enabled by the same set of conditions

(choice, undeterminism).
e |f one fires, does the other remain enabled ?

e A Petri net is persistent if, for any two enabled transitions, the

firing of one cannot disable the other.

e Non-interruptedness (of multiple processes).
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Language Recognition

Language defined by Petri net

set of transition sequences which can fire
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Coverability Notation

e Root node
e [erminal node

e Duplicate node
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Coverability Notation

e Node dominance
X = [x(pl)v :C(pQ)a SR ,a:(pn)]

y = [y(p1),y(P2),-- -, y(pn)]
X >4 Y (x dominates y)if

L z(pi) 2 y(pi),Vie {L,...,n}
2. x(p;) > y(p;) for at least some i € {1,...,n}

e The symbol w represents infinity
X>aqy
For all ¢ such that x(p;) > y(p;), replace z(p;) by w

wHk=w=w—-=~k

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Petri Nets
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Coverability Tree Construction

1. Initialize x = x¢ (initial state)

2. Fore each new node x,
evaluate the transition function f(x,?;) for all t; € T":

(a) if f(x,t;) is undefined for all t; € T, then x is a terminal node.

(b) if f(x,t;) is defined for some t; € T,
create a new node x" = f(x,t;).
i. if x(p;) = w for some p;, set z/(p;) = w.
ii. If there exists a node y in the path from root node xg
(included) to x such that X’ >, y, set 2/(p;) = w for all p;
such that z/(p;) > y(p;)
iii. Otherwise, set X' = f(x,1;).

3. Stop if all new nodes are either terminal or duplicate

Hans Vangheluwe hv@cs.mcgill.ca Modelling and Simulation: Petri Nets
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Coverability Tree Example: Cashier/Queue

,/\:rriual

e
O W
e

4
O
L
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Coverability Tree Example: Cashier/Queue
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Applications of the Coverability Tree

Boundedness: w does not appear in coverability tree

Bounded Petri net = reachability graph

Conservation: ~; = 0 for w positions

Inverse problem: what are v and C' 7

Coverability: inspect coverability tree

Limitations: deadlock detection

hv@cs.mcgill.ca
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