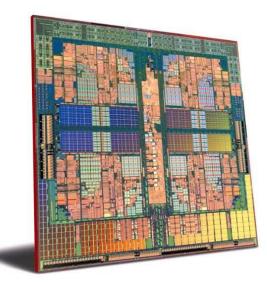
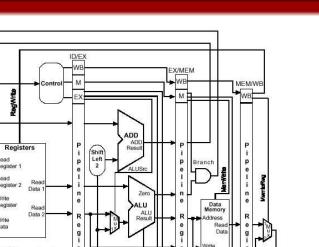


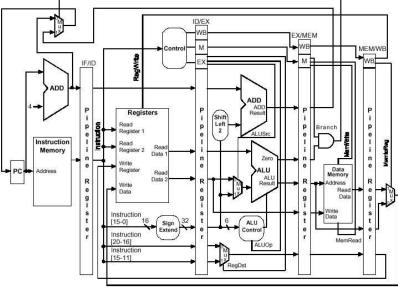
Model Everything!


Compl. Causes

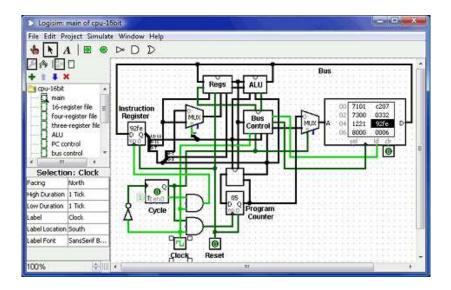
5	OTTN	va	re?

Model Everything!


Compl. Causes



Model Everything!


PCSrc

Compl. Causes

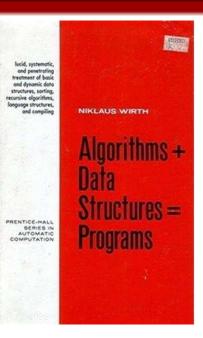
Software?	Model Everything!	Compl. Causes	Dealing with Compl.	Μ

MPM

Model Everything!

Compl. Causes

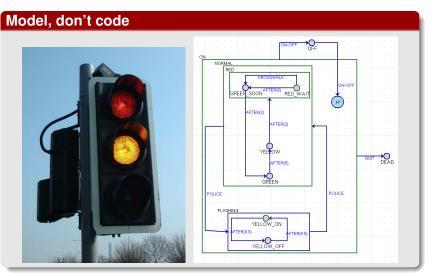
Model Everything!


Compl. Causes

Model Everything!

Compl. Causes

Dealing with Compl.

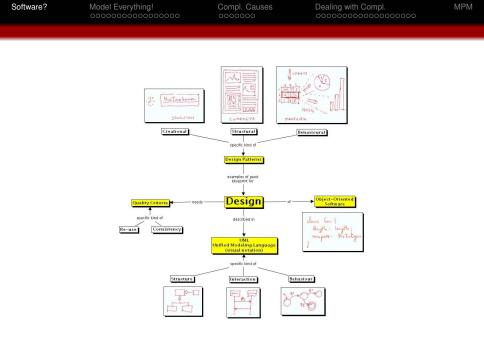


MPM

Software?	Model Eve
	000000

Model Everything!

Compl. Causes



Software?

Model Everything!

Compl. Causes

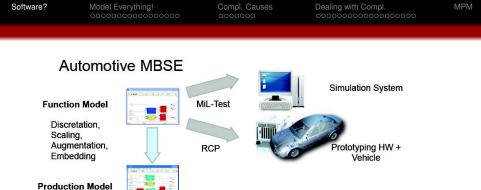
Model Everything!

Compl. Causes

Software?	Model	Everything!
	0000	000000000

Compl. Causes

Model Everything!


Compl. Causes

Model Everything!

Compl. Causes

Model Based Development @ fortiss GmbH

9

Autocoding SiL-Test Controller + Simulation of Environment PiL/HiL-Test Vehicle Integration

Controller +

Santiago di Compostela . 2013-09-06

Simulation System

fortiss

Software?	, 0		Dealing with Compl.
	••••	000000	000000000000000000000000000000000000000

MPM

Dealing with Complexity

Software?	Model Everything!	Compl. Causes	
	•••••		

Dealing with Complexity

Model Everything ... Explicitly

C	oftv	var	02	
0	UILV	ai	•:	

Model Everything!

Compl. Causes

Dealing with Compl.

MPM

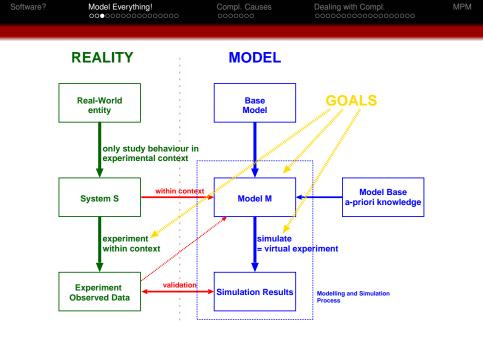
Dealing with Complexity

Model Everything ... Explicitly for **design** (Engineering) and **analysis** (Science)

Model Everything!

Compl. Causes

Dealing with Compl.


MPM

A model is a depiction, representing the original. A model is a reduction, capturing relevant aspects. A model has a purpose, defining its use.

.

Herbert Stachowiak

Bernard P. Zeigler. Multi-faceted Modelling and Discrete-Event Simulation. Academic Press, 1984.

Model Everything!

Compl. Causes

Dealing with Compl.

Modelling and Simulation for

Simulation ... when too costly/dangerous

analysis \leftrightarrow design

Model Everything!

Compl. Causes

Dealing with Compl.

Simulation ... real experiment not ethical

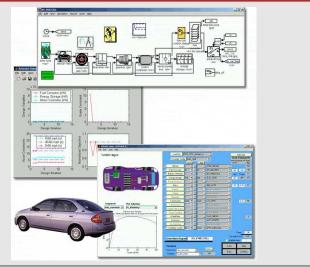
"physical" simulation, training

വ	ŤΜ	′ar		

Model Everything!

Compl. Causes

Dealing with Compl.


Simulation ... evaluate alternatives

Compl. Causes

Modelling and Simulation for

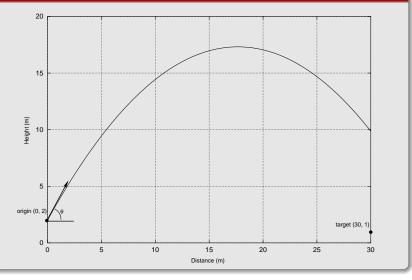
Simulation ... "Do it Right the First Time"

Model Everything!

Compl. Causes

Dealing with Compl.

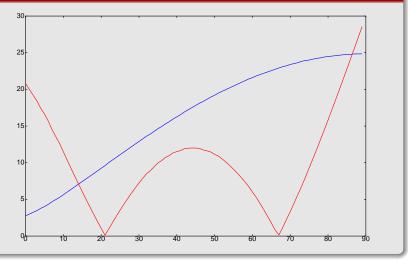
MPM


Modelling and Simulation for

essence: "shooting" problems

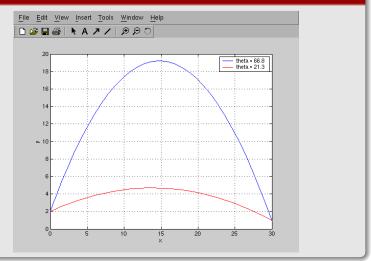
Software?	Model Everything!	Compl. Causes	Dealing with Compl.	MPN
Modelling and S	Simulation for			

defining a "hit"



Software?	Model Everything!	Compl. Causes	Dealing with Compl.	MPI
	000000000000000000000000000000000000000			

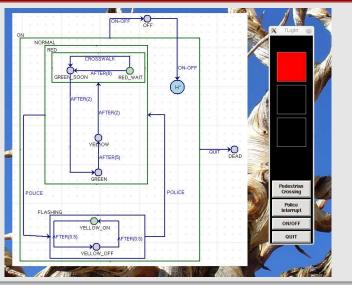
M


Modelling and Simulation for ...

optimizing a "performance metric"

Software?	Model Everything!	Compl. Causes	Dealing with Compl.	MPM
Modelling and S	imulation for			

optimal solution...s


Model Everything!

Compl. Causes

Dealing with Compl.

Modelling and Simulation for

Modelling/Simulation ... and code/app Synthesis

Software?	Model Everything!	Compl. Causes	Dealing with Compl.	MPM
Modelling and S	imulation for			

Documentation

Software?	Model Everything!	Compl. Causes	Dealing with Compl.	MPM	
Modelling and Simulation for					

- Documentation
- Formal Verification of Properties (all models, all behaviours)

Software?	Model Everything!	Compl. Causes	Dealing with Compl.	MPM
Modelling and S	Simulation for			

- Documentation
- Formal Verification of Properties (all models, all behaviours)
- Model Checking of Properties (one model, all behaviours)

Software?	Model Everything! ○○○○○○○○○○○○	Compl. Causes	Dealing with Compl.	MPN	
Modelling and Simulation for					

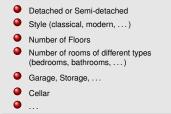
- Documentation
- Formal Verification of Properties (all models, all behaviours)
- Model Checking of Properties (one model, all behaviours)
- Test Generation

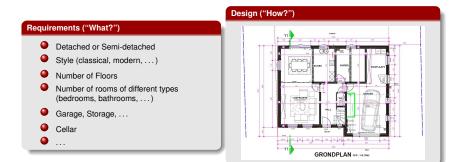
Software?	Model Everything!	Compl. Causes	Dealing with Compl.	MP
	000000000000000000000000000000000000000			

Documentation

Modelling and Simulation for ...

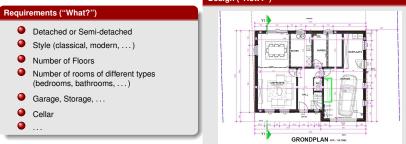
- Formal Verification of Properties (all models, all behaviours)
- Model Checking of Properties (one model, all behaviours)
- Test Generation
- Simulation (one model, one behaviour) ... for calibration, optimization, ...

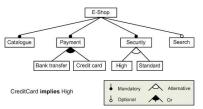

Software?	Model Everything!	Compl. Causes	Dealing with Compl.	MP
	000000000000000000000000000000000000000			


Documentation

Modelling and Simulation for ...

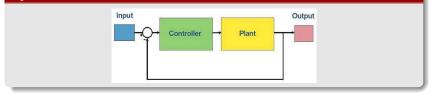
- Formal Verification of Properties (all models, all behaviours)
- Model Checking of Properties (one model, all behaviours)
- Test Generation
- Simulation (one model, one behaviour) ... for calibration, optimization, ...
- Application Synthesis (mostly for models of software)


Requirements ("What?")



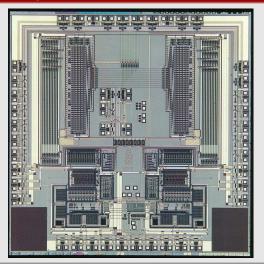
MPM

Software?	Model Everything!	Compl. Causes	Dealing with Compl.
	000000000000000000000000000000000000000		


System Boundaries

- System to be built/studied
- Environment with which the system interacts

Software?	Model Everything! ○○○○○○○○○○○○●○	Compl. Causes	Dealing with Compl.


System vs. "Plant"

System vs. "Plant" **Check Requirement 6** -21/1 Convert AADC (SI) moveU Driver UP armature current Driver Dew essenger down Motor_and_Electronics position Window_Switches Control Obstack Test_Cases Window Mechanics **Obstacle Effects** Visualization1

www.mathworks.com/products/demos/simulink/PowerWindow/html/PowerWindow1.html

Number of Components

Compl. Causes

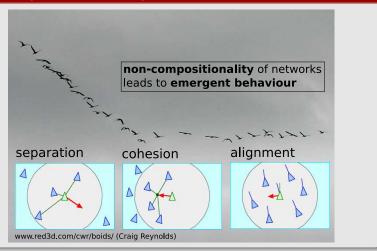
Dealing with Compl.

www.3dm3.com

Compl. Causes

Dealing with Compl.

Diversity of Components: Power Window



	~ 1			-	~	2	
0	υı	u١	N	ar	e.		

Compl. Causes

Dealing with Compl.

Non-compositional/Emergent Behaviour

Software?	Model Everything!	Compl. Causes	Dealing with Compl.
		0000000	

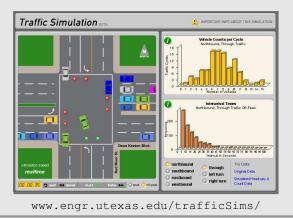
MPM

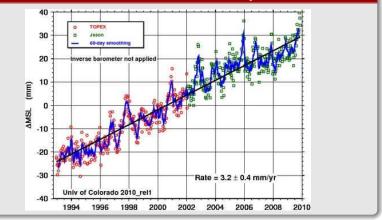
Emergent Behaviour

C	of	tw	ar	0	2
0		LVV	a		

Compl. Causes

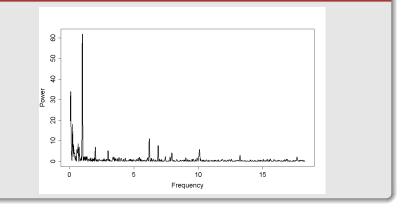
Dealing with Compl.


Engineered Emergent Behaviour


C	of	tw	ar	0	2
0		LVV	a		

Uncertainty

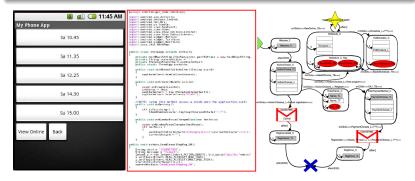
Often related to level of abstraction: for example continuous vs. discrete


Question: is the deviation from the trend periodic?

Software?	Model Everything!	Compl. Causes	Dealing with Compl.	Μ

1PM

Answer: transform to make the solution obvious



Guiding principle (\sim physics: principle of minimal action)

minimize accidental complexity, only essential complexity remains

Fred P. Brooks. No Silver Bullet – Essence and Accident in Software Engineering. Proceedings of the IFIP Tenth World Computing Conference, pp. 1069–1076, 1986.

http://www.lips.utexas.edu/ee382c-15005/Readings/Readings1/05-Broo87.pdf

Software?	Model Everything!	Compl. Causes	Dealing with Compl.

MPM

Software?	Model Everything!	Compl. Causes	Dealing with Compl.

MPM

Dealing with Complexity: some approaches

• multiple abstraction levels

Software?	Model Everything!	Compl. Causes	Dealing with

- multiple abstraction levels
- optimal formalism

Software?	Model Everythi
	000000000

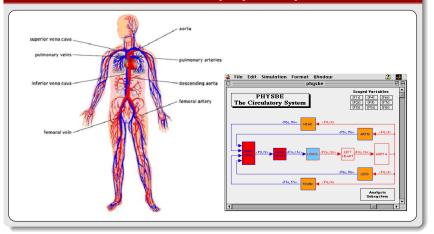
- multiple abstraction levels
- optimal formalism
- multiple formalisms

Software?	Model Everyt
	00000000

- multiple abstraction levels
- optimal formalism
- multiple formalisms
- multiple views

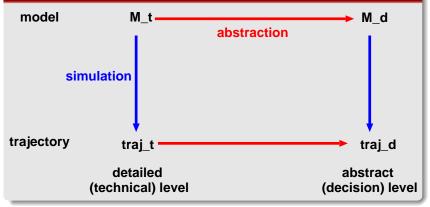
Software?	Model Everythi
	000000000

- multiple abstraction levels
- optimal formalism
- multiple formalisms
- multiple views


Modularity!

Software?	Model Everything!	Compl. Causes	Dealing with Compl.
			•••••••••••••••

MPM


Multiple Abstraction Levels

Different Abstraction Levels – properties preserved

Software?	Model Everything!	Compl. Causes	Dealing with Compl.	MPM
Multiple Abstraction Levels				

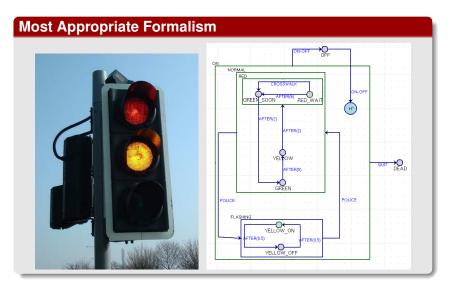
Software?	Model Everything!	Compl. Causes	Dealing with Compl.	MPN
Multiple Abstraction Levels				

Abstraction Relationship

foundation: the information contained in a model M. Different questions (properties) P = I(M) which can be asked concerning the model.

These questions either result in true or false.

Abstraction and its opposite, refinement are relative to a non-empty set of questions (properties) *P*.


- If M_1 is an *abstraction* of M_2 with respect to P, for all $p \in P$: $M_1 \models p \Rightarrow M_2 \models p$. This is written $M_1 \sqsupseteq_P M_2$.
- M_1 is said to be a *refinement* of M_2 iff M_2 is an *abstraction* of M_1 . This is written $M_1 \sqsubseteq_P M_2$.

vare?	Model Everything!
	000000000000000000000000000000000000000

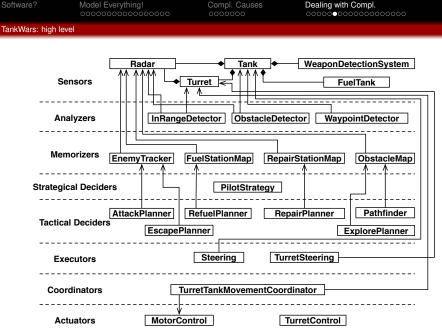
Softv

Compl. Causes

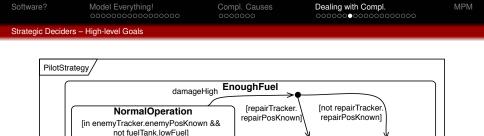
Most Appropriate Formalism (Minimizing Accidental Complexity)

Software?

Model Everything!


Compl. Causes

Dealing with Compl.


Most Appropriate Formalism (Minimizing Accidental Complexity)

www.planeshift.it Massively Multiplayer Online Role Playing games need Non-Player Characters (NPCs)

MPM

Repairing

Fleeing

[repairTracker.

repairPosKnown1

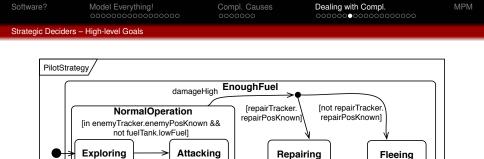
Refueling

(H*)

fuelFull

Attacking

Exploring


fuelLow

Jörg Kienzle, Alexandre Denault, Hans Vangheluwe. Model-Based Design of Computer-Controlled Game Character Behavior. MoDELS 2007: 650-665

[fuelTracker.fuelPosKnown]

repaired

[not fuelTracker.fuelPosKnown]

repaired

Jörg Kienzle, Alexandre Denault, Hans Vangheluwe. Model-Based Design of Computer-Controlled Game Character

[fuelTracker.fuelPosKnown]

[not fuelTracker.fuelPosKnown]

Could have used production rules instead of Statecharts Eugene Syriani, Hans Vangheluwe: Programmed Graph Rewriting with DEVS, AGTIVE 2007; 136-151

fuell ow

Behavior, MoDELS 2007: 650-665

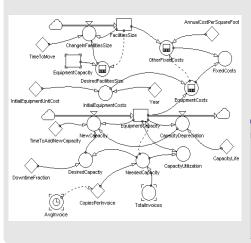
(н∗

fuelFull

[repairTracker.

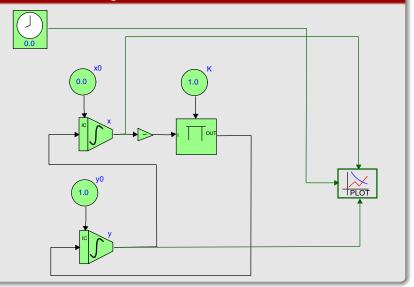
repairPosKnown1

Refueling

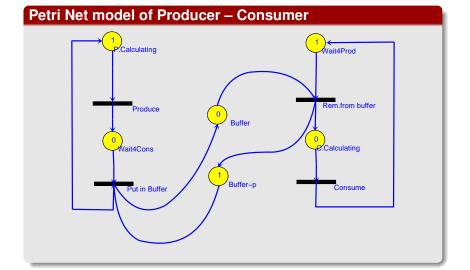

Software?

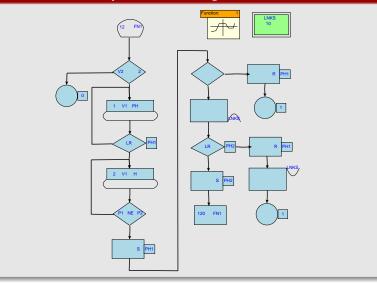
Model Everything!

Compl. Causes


Dealing with Compl.

"Management Flight Simulator" using Forrester System Dynamics model



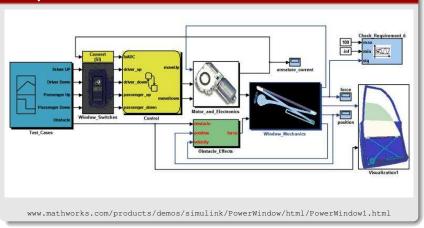

Dealing with Compl.

Dealing with Compl.

GPSS model of Telephone Exchange

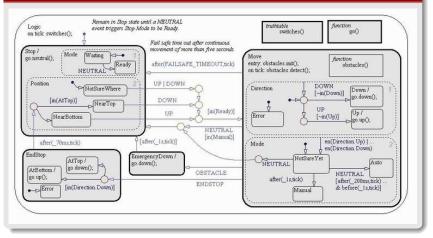
Compl. Causes

Dealing with Compl.

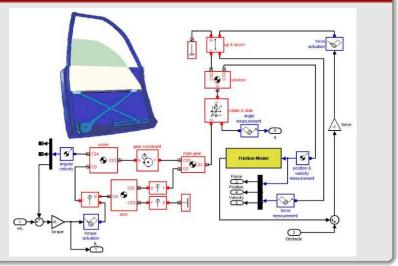

Multiple Formalisms: Power Window

Software?	Model Everything!	Compl. Causes	Dealing with Compl. ○○○○○○○○○○○●○○○○○○	Μ
Multi-Formalism				

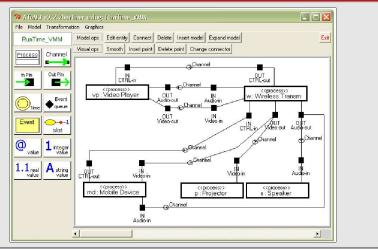
1PM


Components in Different Formalisms

Software?	Model Everything!	Compl. Causes	Dealir


Multi-Formalism

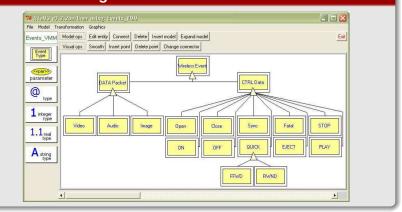
Controller, using Statechart(StateFlow) formalism


0					\sim	
- S	ot	tw	ar	e		

Mechanics subsystem

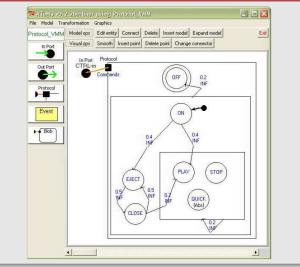
Software?	Model Everything!	Compl. Causes	Dealing with Compl.
			000000000000000000000000000000000000000

Multiple (consistent !) Views (in \neq Formalisms)



Software?	Model Everything!	Compl. Causes	Dealing with Compl.
			000000000000000000000000000000000000000

MPM


View: Events Diagram

Multiple Views/Concerns/Aspects

C	oft	AIC	aro	
0	ott	VVc	are	

View: Protocol Statechart

Software?	Model Everything!

Multiple Views/Concerns/Aspects

No Free Lunch!

Software?	Model Everything!

Multiple Views/Concerns/Aspects

No Free Lunch!

Solutions often introduce their own accidental complexity

multiple abstraction levels (need morphism)

Multiple Views/Concerns/Aspects

No Free Lunch!

- multiple abstraction levels (need morphism)
- optimal formalism (need precise meaning)

Multiple Views/Concerns/Aspects

No Free Lunch!

- multiple abstraction levels (need morphism)
- optimal formalism (need precise meaning)
- multiple formalisms (need relationship)

No Free Lunch!

- multiple abstraction levels (need morphism)
- optimal formalism (need precise meaning)
- multiple formalisms (need relationship)
- multiple views (need **consistency**)

No Free Lunch!

- multiple abstraction levels (need morphism)
- optimal formalism (need precise meaning)
- multiple formalisms (need relationship)
- multiple views (need **consistency**)

- 5	U,	tt	a	r	ρ	

Multi-Paradigm Modelling (model everything, minimize accidental complexity)

- at the most appropriate level of abstraction
- using the most appropriate formalism(s)
 Class Diagrams, Differential Algebraic Equations, Petri Nets, Bond Graphs, Statecharts, CSP, Queueing Networks, Sequence Diagrams, Lustre/Esterel, ...

• with transformations as first-class models

Pieter J. Mosterman and Hans Vangheluwe.

Computer Automated Multi-Paradigm Modeling: An Introduction. Simulation 80(9):433-450, September 2004.

Special Issue: Grand Challenges for Modeling and Simulation.