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Reactive Systems

• Complexity: reactive (to events), timed, concurrent, behaviour

• In contrast to transformational systems, which take input and, 
eventually, produce output
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Modelling Reactive Systems

• Interaction with the environment: reactive to events

• Autonomous behaviour: timeouts + spontaneous transitions

• System behaviour: modes (hierarchical) + concurrent units

• Use programming language + threads and timeouts (OS)?

1E. A. Lee, "The problem with threads," in Computer, vol. 39, no. 5, pp. 33-42, May 2006.

“Nontrivial software written with threads, semaphores, and 
mutexes are incomprehensible to humans”1
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Discrete-Event Abstraction
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State Diagrams

• Non-modular: hierarchical decompositition (orthogonal/depth) not possible

• State space limited (positive: analysability, negative: expressitivity)

• Becomes too large too quickly to be usable
6



Statecharts History

• Introduced by David Harel in 19871

• Notation based on higraphs = hypergraphs + Euler diagrams

• Semantics extend deterministic finite state automata with:
• Depth (Hierarchy)

• Orthogonality

• Broadcast Communication

• Time

• History

• Syntactic sugar, such as enter/exit actions

1David Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming, Volume 8, Issue 3, 1987, Pages 231-274
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Statecharts History
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Higraphs
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Euler Diagrams

Hypergraphs

topological notions for set union, difference, intersection

Hyperedges: ⊆ 2X (undirected), ⊆ 2X ×2X (directed). 

topological notion (syntax): connectedness 

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.



Blobs: set inclusion, not membership

10



Unique Blobs (atomic sets, no intersection)

• Atomic blobs are identifiable sets

• Other blobs are union of enlclosed set (e.g., K = L U M U N U O U P)
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Unordered Cartesian Product:
Orthogonal Components

• K = G x H = (L U M) x (N U O U P)
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Clique Example
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Clique: fully connected semantics
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Entity Relationship Diagram

15



Higraph version of E-R diagram
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Extending E-R Diagram
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Simple Higraph
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Statecharts

Visual (topological, not geometric) formalism•

Precisely defined syntax and semantics•

Many uses:•
Documentation (for human communication)•

Analysis (of behavioural properties)•

Simulation•

Code synthesis•

… • and derived, such as testing, optimization, …
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Statecharts History

• Introduced by David Harel in 19871

• Notation based on higraphs = hypergraphs + Euler diagrams

• Semantics extend deterministic finite state automata with:
• Depth (Hierarchy)

• Orthogonality

• Broadcast Communication

• Time

• History

• Syntactic sugar, such as enter/exit actions

1David Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming, Volume 8, Issue 3, 1987, Pages 231-274
22



Statecharts History: Website
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Running Example

(Physical) Plant

Environment

Controller
system
input

system
output

<<observe>>

<<act>>
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What are we developing?
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(Physical) Plant

Environment

Controller

<<observe>>

<<act>>

system
input

system
output

system
input

system
output

• Turn on/off traffic lights (red/green/yellow)
• Display counter value (three-digit)
• Change counter colour (red/green)
• Sense button presses

Autonomous (timed) behaviour•

Interrupt logic•

Orthogonal (traffic light/timer) behaviour•

(Deployed) Statecharts
Model

“Glue”



Deployment (Simulation)
(Physical) Plant

Environment

Controller

system
input

system
output

<<observe>>

<<act>>

(Simulated) Plant

1 2

Environment
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Deployment (Hardware)
(Physical) Plant

Environment

Controller

system
input

system
output

<<observe>>

<<act>>
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(Physical) Plant

Environment



Workflow

3 Hans Vangheluwe and Ghislain C. Vansteenkiste. A multi-paradigm modeling and simulation methodology: Formalisms and languages. In European 
Simulation Symposium (ESS), pages 168-172. Society for Computer Simulation International (SCS), October 1996. Genoa, Italy.
4 FTG+PM: An Integrated Framework for Investigating Model Transformation Chains,  Levi Lúcio, Sadaf Mustafiz, Joachim Denil, Hans 
Vangheluwe, Maris Jukss. System Design Languages Forum (SDL) 2013, Montreal, Quebec.  LNCS Volume 7916, pp 182-202, 2013.
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Requirements

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on for 5s

• R6: police can interrupt autonomous operation
• Result = blinking yellow light (on -> 1s, off -> 1s)

• R7: police can resume an interrupted traffic light
• Result = light which was on at time of interrupt is turned on again

• R8: a timer displays the remaining time while the light is red or green; this timer 
decreases and displays its value every second. The colour of the timer reflects the 
colour of the traffic light.
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Workflow
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States

• R1: three differently coloured lights: red (R), green (G), yellow (Y)
• R2: at most one light is on at any point in time

Environment(Simulated) Plant

<<observe>>
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Default State

• R1: three differently coloured lights: red (R), green (G), yellow (Y)
• R2: at most one light is on at any point in time
• R3: at system start-up, the red light is on

Environment(Simulated) Plant

<<observe>>
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Transitions

event(params) [guard] / output_action(params)

• R1: three differently coloured lights: red (R), green (G), yellow (Y)
• R2: at most one light is on at any point in time
• R3: at system start-up, the red light is on
• R4: cycles through red on, green on, and yellow on
• R5: red is on for 60s, green is on for 55s, yellow is on for 5s

Environment(Simulated) Plant

<<observe>>
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Yakindu5: Modelling

5 https://www.itemis.com/en/yakindu/state-machine/

(introducing syntactic sugar: enter actions)
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Workflow
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Yakindu: Simulation (Scaled Real-Time)
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Workflow
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Hierarchy

• R6: police can interrupt autonomous operation
• Result = blinking yellow light (on -> 1s, off -> 1s)

• R7: police can resume an interrupted traffic light

FLATTEN

Semantics/Meaning?
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Hierarchy: Modified Example

FLATTEN

Semantics/Meaning?

Statemate, Yakindu, …

(unwanted) non-determinism!

determinism!
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Rhapsody, …



Yakindu: Hierarchy
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History

• R7: police can resume an interrupted traffic light
• Result = light which was on at time of interrupt is turned on again

H

H*

shallow history

deep history
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Deep History
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Yakindu: History
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Concurrency

• R8: a timer displays the remaining time while the light is red or green; this timer decreases and displays 
its value every second. The colour of the timer reflects the colour of the traffic light.

TrafficLight
- timer: int
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Yakindu: Concurrency
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Workflow
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Yakindu: Simulation (Scaled Real-Time)
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Statechart Semantics: Initialization
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init(sc):

targetStates =

getEffectiveTargetStates(getDefaultState(sc))

for target in targetStates:

enter(target)

getEffectiveTargetStates:

H H*

RECURSIVE!



Statecharts Semantics: “Main Loop”

while True:

for all concurrent regions:

candidates = 

findEnabledTransitions(getEnabledEvents(),

getCurrentState())

removeConflicts(candidates)

execute(chooseOne(candidates))

execute(transition):
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t[c]/a

1. Find LCA

2. Leave states up the hierarchy
3. Execute action a

4. Enter states down the hierarchy
(getEffectiveTargetStates())

...



Workflow
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Statecharts Testing

Generator System Under Study Acceptor

6 Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.
7 Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context,
Simulation Modelling Practice and Theory, Volume 14, Issue 2, February 2006, Pages 126-142 52



Orthogonal Components (White-Box)
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Workflow
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Yakindu: Testing
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Yakindu: Testing
Interface

Synchronization

Callback
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Yakindu: Testing
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Workflow
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Code Generation

interrupts

Interface:
• setRed(boolean)
• setGreen(boolean)
• setYellow(boolean)
• setTimerValue(int)
• setTimerColour(string)

Interface:
• in event police_interrupt
• in event toggle
• out event updateTimerColour: string
• out event updateTimerValue: int
• out event displayRed, displayYellow, displayGreen, displayNone

events
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Generated Code

Files

➢ 8 files
➢ 1311 lines of code
➢ 302 manual (UI) code

Sample

60



Interface

Runner

Generator

Setup Code
(Excerpt)

61



Deployed Application (Scaled Real-Time)
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Deploying onto Hardware

63

Interface:
pinMode• (pin_nr, mode)
digitalWrite(• pin_nr, {0, 1})
digitalRead(• pin_nr): {0, 1}



Deploying onto Hardware

64

Generator

Runner

Deployed Application

Button Code
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Overview
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graphically create and edit Statecharts
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+ custom code generators



Validator
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Simulation and Debugging
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Current State Information

Events 
(Raise)

Local Variable Values
(Inspect + Modify)

Play/Pause/Stop/Step

Current Time



Code Generators
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Generator:
• C/C++
• Java
• Custom

Configured
Code Generator

Configuration
(.sgen file)

GeneratorModel for [GeneratorId] {
statechart [StatechartReference] {

feature [Feature] {
[ParameterName] = [ParameterValue]

}
}

}

Model
(.sct file)

Code



Examples

File -> New... -> Example... ->

Yakindu Statechart Examples
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Neutral Action Language

• Types: integer/real/boolean/string/void

• Statements:
• Assignment
• Event Raising
• Operation Call

• Expressions: arithmetic/condition/logical

• Built-in Functions:
• valueOf(event): <value>
• <var> as <type>
• active(state): boolean
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Neutral Action Language

• Trigger:
after: execute after a given time (s, • ms, us, ns)
every: execute periodically after a given time •
(s, ms, us, ns)
always: execute always•

oncycle• : same as always
else: useful for choice states•

default: same as else•

entry: execute upon entering the state•

exit: execute upon exiting the state•
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• Guard:
• Expression (boolean!)

• Effect:
• Statement

• Event Raise

trigger [ guard ] / effect



Operation Callbacks
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Model (Excerpt) Generated Code (Excerpt)

Runner (Excerpt)



Editor Tricks

Subdiagrams
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extract

inline



Editor Tricks
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Export Model as Image
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Recap

• Model the behaviour of complex, timed, reactive, autonomous 
systems
• “What” instead of “How” (= implemented by Statecharts compiler)

• Abstractions:
• States (composite, orthogonal)
• Transitions
• Timeouts
• Events

• Tool support:
• Yakindu
• SCCD
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