
An Introduction to Statecharts
Modelling and Simulation

Hans Vangheluwe

hans.vangheluwe@uantwerpen.be

Simon Van Mierlo

simon.vanmierlo@uantwerpen.be

1

INTRODUCTION

STATECHARTS BASICS

YAKINDU IN DEPTH

ADVANCED CONCEPTS

2

INTRODUCTION

STATECHARTS BASICS

YAKINDU IN DEPTH

ADVANCED CONCEPTS

Reactive Systems

• Complexity: reactive (to events), timed, concurrent, behaviour

• In contrast to transformational systems, which take input and,
eventually, produce output

3

Modelling Reactive Systems

• Interaction with the environment: reactive to events

• Autonomous behaviour: timeouts + spontaneous transitions

• System behaviour: modes (hierarchical) + concurrent units

• Use programming language + threads and timeouts (OS)?

1E. A. Lee, "The problem with threads," in Computer, vol. 39, no. 5, pp. 33-42, May 2006.

“Nontrivial software written with threads, semaphores, and
mutexes are incomprehensible to humans”1

4

Discrete-Event Abstraction

5

State Diagrams

• Non-modular: hierarchical decompositition (orthogonal/depth) not possible

• State space limited (positive: analysability, negative: expressitivity)

• Becomes too large too quickly to be usable
6

Statecharts History

• Introduced by David Harel in 19871

• Notation based on higraphs = hypergraphs + Euler diagrams

• Semantics extend deterministic finite state automata with:
• Depth (Hierarchy)

• Orthogonality

• Broadcast Communication

• Time

• History

• Syntactic sugar, such as enter/exit actions

1David Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming, Volume 8, Issue 3, 1987, Pages 231-274
7

Statecharts History

8

Higraphs

9

Euler Diagrams

Hypergraphs

topological notions for set union, difference, intersection

Hyperedges: ⊆ 2X (undirected), ⊆ 2X ×2X (directed).

topological notion (syntax): connectedness

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.

Blobs: set inclusion, not membership

10

Unique Blobs (atomic sets, no intersection)

• Atomic blobs are identifiable sets

• Other blobs are union of enlclosed set (e.g., K = L U M U N U O U P)

11

Unordered Cartesian Product:
Orthogonal Components

• K = G x H = (L U M) x (N U O U P)

12

Clique Example

13

Clique: fully connected semantics

14

Entity Relationship Diagram

15

Higraph version of E-R diagram

16

Extending E-R Diagram

17

Simple Higraph

18

Statecharts

Visual (topological, not geometric) formalism•

Precisely defined syntax and semantics•

Many uses:•
Documentation (for human communication)•

Analysis (of behavioural properties)•

Simulation•

Code synthesis•

… • and derived, such as testing, optimization, …

21

Statecharts History

• Introduced by David Harel in 19871

• Notation based on higraphs = hypergraphs + Euler diagrams

• Semantics extend deterministic finite state automata with:
• Depth (Hierarchy)

• Orthogonality

• Broadcast Communication

• Time

• History

• Syntactic sugar, such as enter/exit actions

1David Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming, Volume 8, Issue 3, 1987, Pages 231-274
22

Statecharts History: Website

23

Running Example

(Physical) Plant

Environment

Controller
system
input

system
output

<<observe>>

<<act>>

24

What are we developing?

25

(Physical) Plant

Environment

Controller

<<observe>>

<<act>>

system
input

system
output

system
input

system
output

• Turn on/off traffic lights (red/green/yellow)
• Display counter value (three-digit)
• Change counter colour (red/green)
• Sense button presses

Autonomous (timed) behaviour•

Interrupt logic•

Orthogonal (traffic light/timer) behaviour•

(Deployed) Statecharts
Model

“Glue”

Deployment (Simulation)
(Physical) Plant

Environment

Controller

system
input

system
output

<<observe>>

<<act>>

(Simulated) Plant

1 2

Environment

26

Deployment (Hardware)
(Physical) Plant

Environment

Controller

system
input

system
output

<<observe>>

<<act>>

27

(Physical) Plant

Environment

Workflow

3 Hans Vangheluwe and Ghislain C. Vansteenkiste. A multi-paradigm modeling and simulation methodology: Formalisms and languages. In European
Simulation Symposium (ESS), pages 168-172. Society for Computer Simulation International (SCS), October 1996. Genoa, Italy.
4 FTG+PM: An Integrated Framework for Investigating Model Transformation Chains, Levi Lúcio, Sadaf Mustafiz, Joachim Denil, Hans
Vangheluwe, Maris Jukss. System Design Languages Forum (SDL) 2013, Montreal, Quebec. LNCS Volume 7916, pp 182-202, 2013.

28

Requirements

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on for 5s

• R6: police can interrupt autonomous operation
• Result = blinking yellow light (on -> 1s, off -> 1s)

• R7: police can resume an interrupted traffic light
• Result = light which was on at time of interrupt is turned on again

• R8: a timer displays the remaining time while the light is red or green; this timer
decreases and displays its value every second. The colour of the timer reflects the
colour of the traffic light.

29

Workflow

30

INTRODUCTION

STATECHARTS BASICS

YAKINDU IN DEPTH

ADVANCED CONCEPTS

31

States

• R1: three differently coloured lights: red (R), green (G), yellow (Y)
• R2: at most one light is on at any point in time

Environment(Simulated) Plant

<<observe>>

32

Default State

• R1: three differently coloured lights: red (R), green (G), yellow (Y)
• R2: at most one light is on at any point in time
• R3: at system start-up, the red light is on

Environment(Simulated) Plant

<<observe>>

33

Transitions

event(params) [guard] / output_action(params)

• R1: three differently coloured lights: red (R), green (G), yellow (Y)
• R2: at most one light is on at any point in time
• R3: at system start-up, the red light is on
• R4: cycles through red on, green on, and yellow on
• R5: red is on for 60s, green is on for 55s, yellow is on for 5s

Environment(Simulated) Plant

<<observe>>

34

Yakindu5: Modelling

5 https://www.itemis.com/en/yakindu/state-machine/

(introducing syntactic sugar: enter actions)

35

Workflow

36

Yakindu: Simulation (Scaled Real-Time)

37

Workflow

38

Hierarchy

• R6: police can interrupt autonomous operation
• Result = blinking yellow light (on -> 1s, off -> 1s)

• R7: police can resume an interrupted traffic light

FLATTEN

Semantics/Meaning?

39

Hierarchy: Modified Example

FLATTEN

Semantics/Meaning?

Statemate, Yakindu, …

(unwanted) non-determinism!

determinism!

40

Rhapsody, …

Yakindu: Hierarchy

41

History

• R7: police can resume an interrupted traffic light
• Result = light which was on at time of interrupt is turned on again

H

H*

shallow history

deep history

42

Deep History

43

Yakindu: History

44

Concurrency

• R8: a timer displays the remaining time while the light is red or green; this timer decreases and displays
its value every second. The colour of the timer reflects the colour of the traffic light.

TrafficLight
- timer: int

45

Yakindu: Concurrency

46

Workflow

47

Yakindu: Simulation (Scaled Real-Time)

48

Statechart Semantics: Initialization

49

init(sc):

targetStates =

getEffectiveTargetStates(getDefaultState(sc))

for target in targetStates:

enter(target)

getEffectiveTargetStates:

H H*

RECURSIVE!

Statecharts Semantics: “Main Loop”

while True:

for all concurrent regions:

candidates =

findEnabledTransitions(getEnabledEvents(),

getCurrentState())

removeConflicts(candidates)

execute(chooseOne(candidates))

execute(transition):

50

t[c]/a

1. Find LCA

2. Leave states up the hierarchy
3. Execute action a

4. Enter states down the hierarchy
(getEffectiveTargetStates())

...

Workflow

51

Statecharts Testing

Generator System Under Study Acceptor

6 Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.
7 Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context,
Simulation Modelling Practice and Theory, Volume 14, Issue 2, February 2006, Pages 126-142 52

Orthogonal Components (White-Box)

53

Workflow

54

Yakindu: Testing

55

Yakindu: Testing
Interface

Synchronization

Callback

56

Yakindu: Testing

57

Workflow

58

Code Generation

interrupts

Interface:
• setRed(boolean)
• setGreen(boolean)
• setYellow(boolean)
• setTimerValue(int)
• setTimerColour(string)

Interface:
• in event police_interrupt
• in event toggle
• out event updateTimerColour: string
• out event updateTimerValue: int
• out event displayRed, displayYellow, displayGreen, displayNone

events

59

Generated Code

Files

➢ 8 files
➢ 1311 lines of code
➢ 302 manual (UI) code

Sample

60

Interface

Runner

Generator

Setup Code
(Excerpt)

61

Deployed Application (Scaled Real-Time)

62

Deploying onto Hardware

63

Interface:
pinMode• (pin_nr, mode)
digitalWrite(• pin_nr, {0, 1})
digitalRead(• pin_nr): {0, 1}

Deploying onto Hardware

64

Generator

Runner

Deployed Application

Button Code

INTRODUCTION

STATECHARTS BASICS

YAKINDU IN DEPTH

ADVANCED CONCEPTS

65

Overview

66

graphically create and edit Statecharts
va

lid
at

e
sy

n
ta

x
an

d

(s
ta

ti
c)

 s
em

an
ti

cs
sim

u
late th

e b
eh

avio
r

o
f Statech

arts

code generators for Java, C, and C++
+ custom code generators

Validator

67

Simulation and Debugging

68

Current State Information

Events
(Raise)

Local Variable Values
(Inspect + Modify)

Play/Pause/Stop/Step

Current Time

Code Generators

69

Generator:
• C/C++
• Java
• Custom

Configured
Code Generator

Configuration
(.sgen file)

GeneratorModel for [GeneratorId] {
statechart [StatechartReference] {

feature [Feature] {
[ParameterName] = [ParameterValue]

}
}

}

Model
(.sct file)

Code

Examples

File -> New... -> Example... ->

Yakindu Statechart Examples

70

Neutral Action Language

• Types: integer/real/boolean/string/void

• Statements:
• Assignment
• Event Raising
• Operation Call

• Expressions: arithmetic/condition/logical

• Built-in Functions:
• valueOf(event): <value>
• <var> as <type>
• active(state): boolean

71

Neutral Action Language

• Trigger:
after: execute after a given time (s, • ms, us, ns)
every: execute periodically after a given time •
(s, ms, us, ns)
always: execute always•

oncycle• : same as always
else: useful for choice states•

default: same as else•

entry: execute upon entering the state•

exit: execute upon exiting the state•

72

• Guard:
• Expression (boolean!)

• Effect:
• Statement

• Event Raise

trigger [guard] / effect

Operation Callbacks

73

Model (Excerpt) Generated Code (Excerpt)

Runner (Excerpt)

Editor Tricks

Subdiagrams

74

extract

inline

Editor Tricks

75

Export Model as Image

INTRODUCTION

STATECHARTS BASICS

YAKINDU IN DEPTH

ADVANCED CONCEPTS

76

Recap

• Model the behaviour of complex, timed, reactive, autonomous
systems
• “What” instead of “How” (= implemented by Statecharts compiler)

• Abstractions:
• States (composite, orthogonal)
• Transitions
• Timeouts
• Events

• Tool support:
• Yakindu
• SCCD

98

