Controller Design and Tuning

Hans Vangheluwe and Claudio Gomes

Modelling, Simulation and Design Lab (MSDL)

University of Antwerp, Belgium and McGill University, Canada

October 2017

▶ A *control system* (or "controller") is a system whose purpose is to command, direct, or regulate itself, or another system.

- ▶ A control system (or "controller") is a system whose purpose is to command, direct, or regulate itself, or another system.
- ► The System under Control is often called a "plant" (as in "chemical production plant").

- ▶ A control system (or "controller") is a system whose purpose is to command, direct, or regulate itself, or another system.
- ► The System under Control is often called a "plant" (as in "chemical production plant").
- ▶ There are open-loop and closed-loop control systems.

- ▶ A control system (or "controller") is a system whose purpose is to command, direct, or regulate itself, or another system.
- ► The System under Control is often called a "plant" (as in "chemical production plant").
- ▶ There are open-loop and closed-loop control systems.
 - ► Closed-loop control system: e.g., human picking an object

- ▶ A control system (or "controller") is a system whose purpose is to command, direct, or regulate itself, or another system.
- ► The System under Control is often called a "plant" (as in "chemical production plant").
- ▶ There are open-loop and closed-loop control systems.
 - ► Closed-loop control system: e.g., human picking an object
 - Eyes are sensors.

- ▶ A control system (or "controller") is a system whose purpose is to command, direct, or regulate itself, or another system.
- ► The System under Control is often called a "plant" (as in "chemical production plant").
- ▶ There are open-loop and closed-loop control systems.
 - ► Closed-loop control system: e.g., human picking an object
 - Eyes are sensors.
 - Hands are actuators.

- ▶ A control system (or "controller") is a system whose purpose is to command, direct, or regulate itself, or another system.
- ► The System under Control is often called a "plant" (as in "chemical production plant").
- ▶ There are open-loop and closed-loop control systems.
 - Closed-loop control system: e.g., human picking an object
 - Eyes are sensors.
 - Hands are actuators.
 - Brain is the controller that estimates the distance between hand and object based on sensor input.
 It determines/computes an appropriate control action that satisfies requirements and implements it through the actuators.

- ▶ A control system (or "controller") is a system whose purpose is to command, direct, or regulate itself, or another system.
- ► The System under Control is often called a "plant" (as in "chemical production plant").
- ▶ There are open-loop and closed-loop control systems.
 - Closed-loop control system: e.g., human picking an object
 - Eyes are sensors.
 - ► Hands are actuators.
 - Brain is the controller that estimates the distance between hand and object based on sensor input.
 It determines/computes an appropriate control action that satisfies requirements and implements it through the actuators.
 - Open-loop control system: e.g., blindfolded picking

- ▶ A control system (or "controller") is a system whose purpose is to command, direct, or regulate itself, or another system.
- ► The System under Control is often called a "plant" (as in "chemical production plant").
- ▶ There are open-loop and closed-loop control systems.
 - Closed-loop control system: e.g., human picking an object
 - Eyes are sensors.
 - ► Hands are actuators.
 - Brain is the controller that estimates the distance between hand and object based on sensor input.
 It determines/computes an appropriate control action that satisfies requirements and implements it through the actuators.
 - ▶ Open-loop control system: e.g., blindfolded picking
 - Only the current state and a model of the plant are used. The output of the system under control is not observed.

- ▶ A control system (or "controller") is a system whose purpose is to command, direct, or regulate itself, or another system.
- ► The System under Control is often called a "plant" (as in "chemical production plant").
- ▶ There are open-loop and closed-loop control systems.
 - Closed-loop control system: e.g., human picking an object
 - Eyes are sensors.
 - Hands are actuators.
 - Brain is the controller that estimates the distance between hand and object based on sensor input.
 It determines/computes an appropriate control action that satisfies requirements and implements it through the actuators.
 - ▶ Open-loop control system: e.g., blindfolded picking
 - Only the current state and a model of the plant are used. The output of the system under control is not observed.
- Our example (closed loop): velocity control in rail car

Moving Car (the physical "plant") Model

$$F_{res} = F_{traction} + F_{drag}$$

$$F_{drag} = -\frac{1}{2} \cdot p \cdot v^2 \cdot C_D \cdot A$$

$$F_{res} = M \cdot a = M \cdot \frac{dv}{dt}$$

$$F_{drag} = \frac{1}{2} \cdot p \cdot v^2 \cdot C_D \cdot A$$

$$F_{res} = \frac{1}{2} \cdot p \cdot v^2 \cdot C_D \cdot A$$

$$\frac{dv}{dt} = \frac{1}{M} \left(F_{traction} - \frac{1}{2} \cdot p \cdot v^2 \cdot C_D \cdot A \right)$$
$$v(0) = 0$$

A Proportional-Integral-Derivative (PID) controller takes as input the error (deviation of the measured/sensed value from the ideal or "setpoint" value) $v_i - v$ and produces an output to be sent to the plant via the actuator.

A Proportional-Integral-Derivative (PID) controller takes as input the error (deviation of the measured/sensed value from the ideal or "setpoint" value) $v_i - v$ and produces an output to be sent to the plant via the actuator.

This is done by combining three different controllers:

A Proportional-Integral-Derivative (PID) controller takes as input the error (deviation of the measured/sensed value from the ideal or "setpoint" value) $v_i - v$ and produces an output to be sent to the plant via the actuator.

This is done by combining three different controllers:

Proportional Controller – outputs $K_p \cdot (v_i - v)$, with K_p an appropriate constant;

A Proportional-Integral-Derivative (PID) controller takes as input the error (deviation of the measured/sensed value from the ideal or "setpoint" value) $v_i - v$ and produces an output to be sent to the plant via the actuator.

This is done by combining three different controllers:

```
Proportional Controller – outputs K_p \cdot (v_i - v), with K_p an appropriate constant;
```

Integral Controller – outputs
$$K_i \cdot \int (v_i - v)dt$$
, with K_i an appropriate constant;

A Proportional-Integral-Derivative (PID) controller takes as input the error (deviation of the measured/sensed value from the ideal or "setpoint" value) $v_i - v$ and produces an output to be sent to the plant via the actuator.

This is done by combining three different controllers:

```
Proportional Controller – outputs K_p \cdot (v_i - v), with K_p an appropriate constant;
```

Integral Controller – outputs $K_i \cdot \int (v_i - v)dt$, with K_i an appropriate constant;

Derivative Controller – outputs $K_d \cdot \frac{d(v_i - v)}{dt}$, with K_d an appropriate constant;

A Proportional-Integral-Derivative (PID) controller takes as input the error (deviation of the measured/sensed value from the ideal or "setpoint" value) $v_i - v$ and produces an output to be sent to the plant via the actuator.

This is done by combining three different controllers:

Proportional Controller – outputs $K_p \cdot (v_i - v)$, with K_p an appropriate constant;

Integral Controller – outputs $K_i \cdot \int (v_i - v) dt$, with K_i an appropriate constant;

Derivative Controller – outputs $K_d \cdot \frac{d(v_i - v)}{dt}$, with K_d an appropriate constant;

A PID controller produces a control output:

$$K_p \cdot (v_i - v) + K_i \cdot \int (v_i - v) dt + K_d \cdot \frac{d(v_i - v)}{dt}$$

Closed-Loop PID Controller for Velocity Control

▶ Build the controller for a driverless rail car.

- Build the controller for a driverless rail car.
- The controller determines the acceleration of the train, in an attempt to match (i.e., deviate as little as possible from) a predefined profile of desired velocities.

- ▶ Build the controller for a driverless rail car.
- ► The controller determines the acceleration of the train, in an attempt to match (i.e., deviate as little as possible from) a predefined profile of desired velocities.

The desired (piecewise constant) velocity profile is known beforehand by a central coordinator (and is encoded in a file).

- Build the controller for a driverless rail car.
- ► The controller determines the acceleration of the train, in an attempt to match (i.e., deviate as little as possible from) a predefined profile of desired velocities.

The desired (piecewise constant) velocity profile is known beforehand by a central coordinator (and is encoded in a file).

- ▶ Passengers should not fall (i.e., accelerate too much).
- Other requirements such as minimizing total energy consumption could be added.

Abstracting the Passenger: Mass-Spring-Damper System

$$\begin{cases} F_{ext} & = -f \\ F_{spring} & = -k(-x) \\ F_{damper} & = -c(-v) \\ M \cdot a & = F_{ext} + F_{spring} + F_{damper} \\ \frac{dv}{dt} & = a \\ \frac{dx}{dt} & = v \end{cases}$$

$$\begin{cases} \frac{dv}{dt} &= \frac{1}{M}(-f + k \cdot x + c \cdot v) \\ \frac{dx}{dt} &= v \end{cases}$$

Abstracting Train-and-Passenger ("Plant" model)

$$\begin{cases} m_{passger} * a_{passger} &= k(-x_{passger}) + c(-v_{passger}) - m_{passger} * a_{train} \\ F_{traction} &= (m_{train} + m_{passger}) * a_{train} \\ a_{passger} &= \frac{dv_{passger}}{dt} \\ v_{passger} &= \frac{dx_{passger}}{dt} \\ a_{train} &= \frac{dv_{train}}{dt} \\ v_{train} &= \frac{dx_{train}}{dt} \end{cases}$$

Some Results - Train Velocity

$$\begin{cases} m_{passger} &= 73 kg \\ m_{train} &= 6000 kg \\ k &= 300 \\ c &= 150 \\ K_p &= 100 \\ K_i &= 0 \\ K_d &= 0 \end{cases}$$

Some Results - Passenger Displacement and Acceleration

Some Results - Train Velocity

Some Results - Passenger Displacement and Acceleration

Some Results - Train Velocity

```
\begin{cases} m_{passger} &= 73 kg \\ m_{train} &= 6000 kg \\ k &= 300 \\ c &= 150 \\ K_p &= 200 \\ K_i &= 10 \\ K_d &= 0 \end{cases}
```


Some Results - Passenger Displacement and Acceleration

Some Results - Train Velocity

$$\begin{cases} m_{passger} &= 73 kg \\ m_{train} &= 6000 kg \\ k &= 300 \\ c &= 150 \\ K_p &= 1500 \\ K_i &= 0 \\ K_d &= 2000 \end{cases}$$

Some Results - Passenger Displacement and Acceleration

