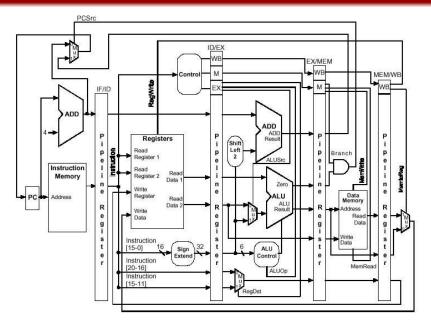
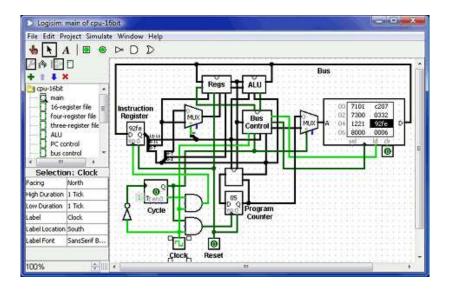

Model Everything!

Compl. Causes

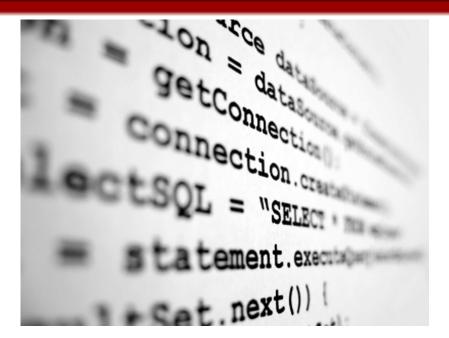

S	-		0	-	3
О	U	LW	ıa	IE	

Compl. Causes



Model Everything!

Compl. Causes


Software?	Model Everything!	Compl. Causes	Dealing with Compl.	M

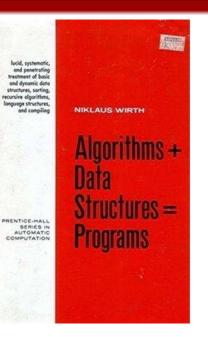
MPM

Model Everything!

Compl. Causes

Model Everything!

Compl. Causes

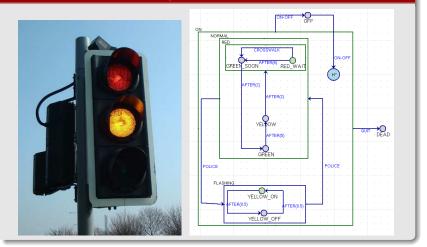


Model Everything!

Compl. Causes

Dealing with Compl.

MPM



Software?	
-----------	--

Compl. Causes

Dealing with Compl.

Model, don't code (though code is a model too)

0					0
5	OI	ťν	(a)	re	4

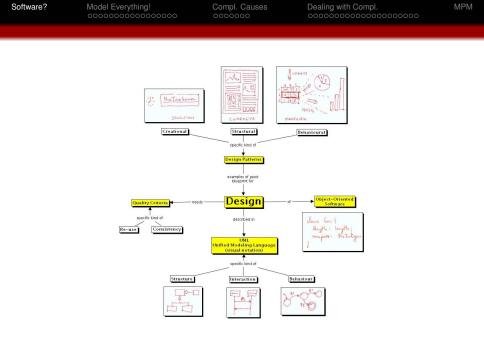
Compl. Causes

Software?

Compl. Causes

Dealing with Compl.

beware of leaky abstractions


Co	fture	ire?
30	llwa	ue:

Compl. Causes

Dealing with Compl.

"All non-trivial abstractions, to some degree, are leaky." (Joel Spolsky)

Model Everything!

Compl. Causes

|--|

Mercedes S Class: >100 ECUs, >20 million LOC

Model Everything!

Compl. Causes

Model Everything!

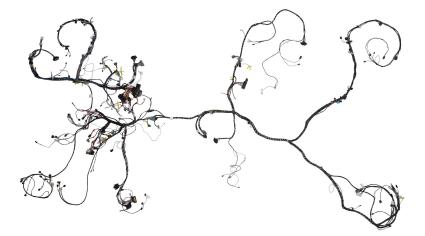
Compl. Causes

Dealing with Compl.

VW Phaeton: wiring harness length > 2km, copper weight > 30kg

Model Everything!

Compl. Causes


Dealing with Compl.

http://blog.nxp.com/the-wiring-harness-the-smart-communication-network-in-every-car/

Software?	Model Everything!	Compl. Causes	Dealing with Compl.

MPM

http://blog.nxp.com/the-wiring-harness-the-smart-communication-network-in-every-car/

Model Everything!

Compl. Causes

Software?	Model Everything! 000000000000000000000000000000000000	Compl. Causes	Dealing with Compl.	MPM
	EUSA TODAY. Home New	s 📕 Travel 📕 Money 📕	Sports 📕 Life 📕 Tech 📕 Wi	
	Nation Inside News		= Cars	
	VW recalls 790, lights	000 vehicles be	ecause of brake	
	Updated 2/26/2007 3:45 PM ET		E-mail Print RSS kswagen of America said Monday it les because of problems with the	
		the Golf and GTI, 2001-20 the 2004 R32. It expands	I vehicles: 1999-2006 model years of 05 Jettas, 2001-2007 New Beetles and upon a recall announced last year of ties because of the same defect.	
	Enlarge Vo	Volkswagen told the Nation Administration that the bra malfunction if they were im	ke light switches in the vehicles could	
	2001-2007 New Beetles are part of the recall earlier recall for the same issue affected 1996 Beetles.	An function which would fail t	Int could either remain on or not o provide other motorists with the potentially lead to a crash.	

In some vehicles with automatic transmissions, a faulty brake light could work in tandem with the shift interlock to immobilize

the vehicle and require towing, said VW spokesman Keith Price.

Last year, VW recalled 362,000 Jetta and New Beetle sedans because of similar problems with the brake lights. That recall affected Jettas from the 1999-2002 model years and New Beetles from the 1998-2002 model years.

Price said the latest recall is an extension of the previous one because the company "found that there was a broader pool of vehicles that had the defective part."

He said owners of 2001-2002 Jettas and New Beetles who already had the repairs completed following last year's recall would not need to return for a second time.

VW dealers will install the newly designed brake light switch free of charge. The recall is expected to begin in late April and owners may contact VW with questions at 800-822-8987.

Copyright 2007 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Posted 2/26/2007 11:02 AM ET

Autocoding

Model Based Development @ fortiss GmbH

Production Code

9

iode

SiL-Test

Controller + Simulation of Environment

Simulation System

Controller + Vehicle

Santiago di Compostela, 2013-09-06

Software?	Model Everything! ●oooooooooooooooooo	Compl. Causes	Dealing with Compl.

MPM

Dealing with Complexity

Software?	Model Everything!	Compl. Causes	Dealing with Compl.

MPM

Dealing with Complexity

Model Everything ... Explicitly

Software?	Model Everything!	Compl. Causes	
	• 00 00000000000000		

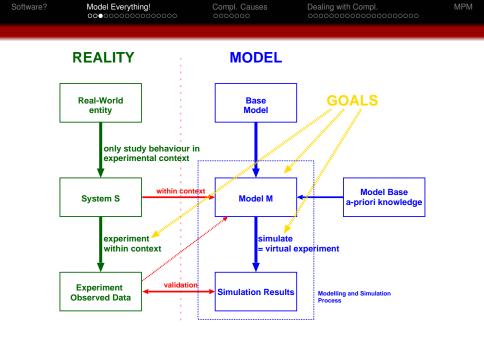
Dealing with Complexity

Model Everything ... Explicitly for **design** (Engineering) and **analysis** (Science)

Model Everything!

Compl. Causes

Dealing with Compl.


MPM

A model is a depiction, representing the original. A model is a reduction, capturing relevant aspects. A model has a purpose, defining its use.

.

Herbert Stachowiak

Bernard P. Zeigler. Multi-faceted Modelling and Discrete-Event Simulation. Academic Press, 1984.

Model Everything!

Compl. Causes

Dealing with Compl.

Modelling and Simulation for

Simulation ... when too costly/dangerous

analysis \leftrightarrow design

Model Everything!

Compl. Causes

Dealing with Compl.

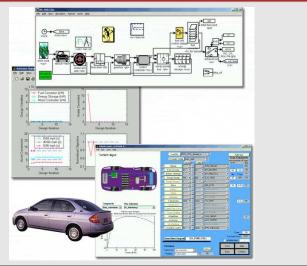
Simulation ... real experiment not ethical

"physical" simulation, training

0					0	
- S	വ	Ħν	va	re		

Compl. Causes

Dealing with Compl.


Modelling and Simulation for

Simulation ... evaluate alternatives

Compl. Causes

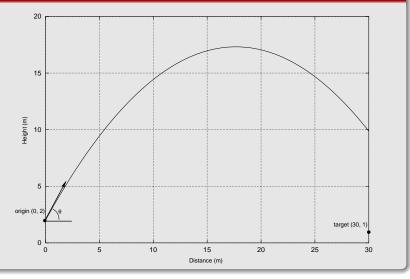
Simulation ... "Do it Right the First Time"

Compl. Causes

Dealing with Compl.

MPM

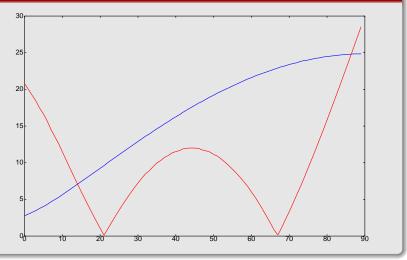
Modelling and Simulation for


essence: "shooting" problems

Software?	Model Everything! ○○○○○○○●○○○○○○○	Compl. Causes	Dealing with Compl.	MPN
Modelling and S	Simulation for			

M

defining a "hit"

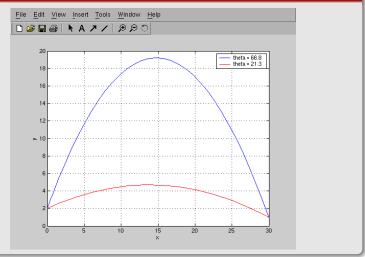


Software?	Model Everything!	Compl. Causes	Dealing with Compl.
	000000000000000000000000000000000000000		

MPM

Modelling and Simulation for ...

optimizing a "performance metric"

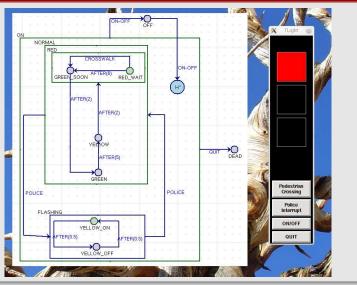


Software?	Model Everything!	Compl. Causes	Dealing with Compl.	MF
	000000000000000000000000000000000000000			

РM

Modelling and Simulation for ...

optimal solution...s


Model Everything!

Compl. Causes

Dealing with Compl.

Modelling and Simulation for

Modelling/Simulation ... and code/app Synthesis

Software?	Model Everything!	Compl. Causes	Dealing with Compl.	MPM
Modelling and S	Simulation for			

The spectrum of uses of models

Documentation, Communication

Software?	Model Everything!	Compl. Causes	Dealing with Compl.	MPM
Modelling and Si	mulation for			

- Documentation, Communication
- Formal Verification of Properties (all models, all behaviours)

Software?	Model Everything!	Compl. Causes	Dealing with Compl.		
Modelling and Simulation for					

- Documentation, Communication
- Formal Verification of Properties (all models, all behaviours)
- Model Checking of Properties (one model, all behaviours)

Software?	Model Everything!	Compl. Causes	Dealing with Compl.		
Modelling and Simulation for					

- Documentation, Communication
- Formal Verification of Properties (all models, all behaviours)
- Model Checking of Properties (one model, all behaviours)
- Test Generation

Software?	Model Everything!	Compl. Causes	Dealing with Compl.
	000000000000000000000000000000000000000		

The spectrum of uses of models

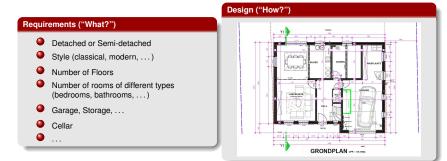
- Documentation, Communication
- Formal Verification of Properties (all models, all behaviours)
- Model Checking of Properties (one model, all behaviours)
- Test Generation

Modelling and Simulation for ...

• Simulation (one model, one behaviour) ... for calibration, optimization, ...

Software?	Model Everything!	Compl. Causes	Dealing with Compl.
	000000000000000000000000000000000000000		

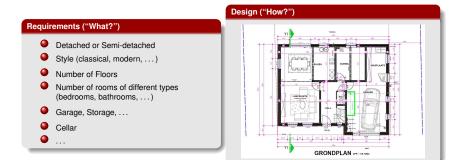
MPN

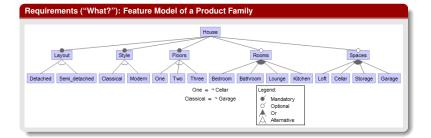

Modelling and Simulation for ...

- Documentation, Communication
- Formal Verification of Properties (all models, all behaviours)
- Model Checking of Properties (one model, all behaviours)
- Test Generation
- Simulation (one model, one behaviour) ... for calibration, optimization, ...
- Application Synthesis (software, FPGA, 3D printing, production line control, ...)

Requirements ("What?")

Dealing with Compl.


MPM

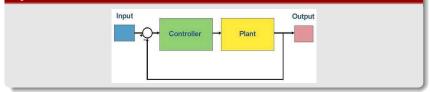


Model Everything!

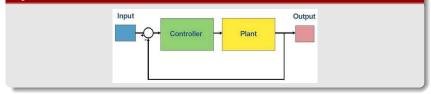
Compl. Causes

Dealing with Compl.

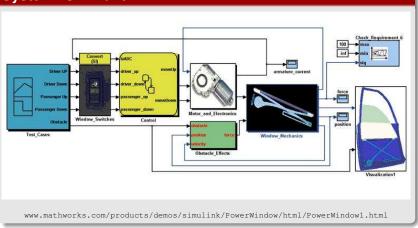
	~ 1			-	~	2	
0	υı	u١	N	ar	e.		


System Boundaries

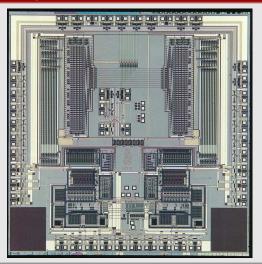
- System to be built/studied
- Environment with which the system interacts


Software?	Model Everything!	Compl. Causes	Dealing with Compl.	MPM
	000000000000000000000000000000000000000			

System vs. "Plant"


Software?	Model Everything!	Compl. Causes	Dealing with Compl.
	000000000000000000000000000000000000000		

System vs. "Plant"



System vs. "Plant"

Dealing with Compl.

Number of Components

Model Everything!

Compl. Causes ○●○○○○○ Dealing with Compl.

Crowds: diversity, interaction

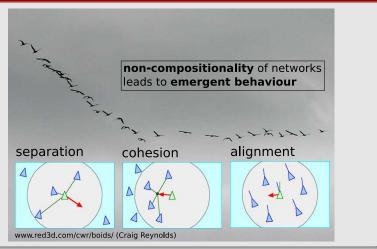
www.3dm3.com

Software?

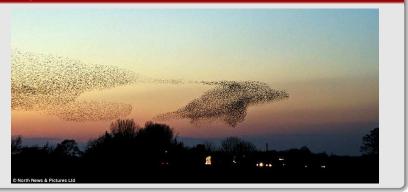
Model Everything!

Compl. Causes

Dealing with Compl.


Diversity of Components: Power Window

MPM


Dealing with Compl.

Non-compositional/Emergent Behaviour

Software?	Model Everything!	Compl. Causes	Dealing w
		0000000	

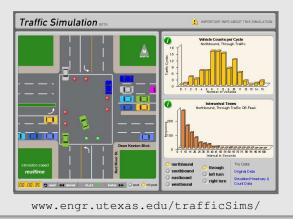
Emergent Behaviour

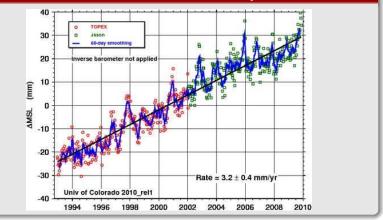
- 5	U,	tt	a	r	ρ	

Model Everything!

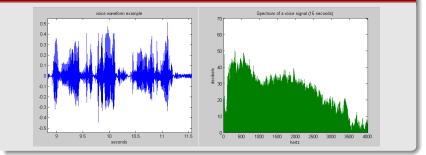
Compl. Causes

Dealing with Compl.

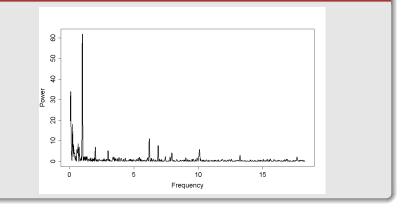

Engineered Emergent Behaviour


-S	nt	tν	٬ar	e	

Uncertainty


Often related to level of abstraction: for example continuous vs. discrete

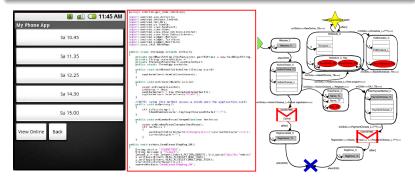
Question: is the deviation from the trend periodic?


Fourier Transform: time-domain \rightarrow frequency-domain

$$f(t) = \int_{0}^{+\infty} [a(\lambda)\cos(2\pi\lambda t) + b(\lambda)\sin(2\pi\lambda t)]d\lambda$$

Software?	Model Everything!	Compl. Causes	Dealing with Compl.

Answer: transform to make the solution obvious



Guiding principle (\sim physics: principle of minimal action)

minimize accidental complexity, only essential complexity remains

Fred P. Brooks. No Silver Bullet – Essence and Accident in Software Engineering. Proceedings of the IFIP Tenth World Computing Conference, pp. 1069–1076, 1986.

http://www.lips.utexas.edu/ee382c-15005/Readings/Readings1/05-Broo87.pdf

Software?	Model Everything!	Compl. Causes	Dealing with Compl.

Software?	Model Everything!	Compl. Causes	Dealing with Compl.

Dealing with Complexity: some approaches

• multiple abstraction levels

Software?	Model Everything!	Compl. Causes	Dealing with Compl.

- multiple abstraction levels
- optimal formalism

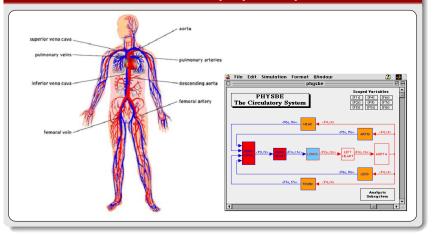
Software?	Model Everything!	Comp

- multiple abstraction levels
- optimal formalism
- multiple formalisms

Software?	Model Everything!

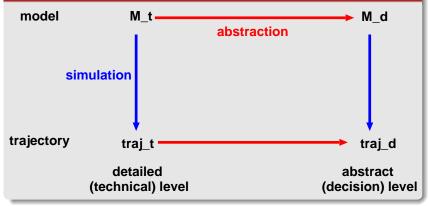
- multiple abstraction levels
- optimal formalism
- multiple formalisms
- multiple views

Software?	Model Everything!	


- multiple abstraction levels
- optimal formalism
- multiple formalisms
- multiple views

Modularity!

Software?	Model Everything!	Compl. Causes	Dealing with Compl.
			•••••••••••••••


Different Abstraction Levels – properties preserved

Multiple Abstraction Levels

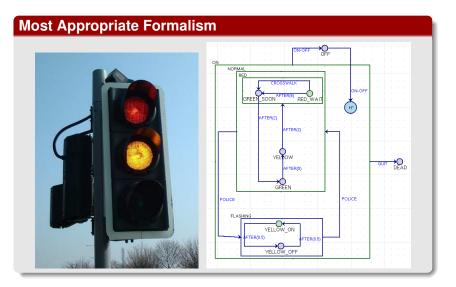
Software?	Model Everything!	Compl. Causes	Dealing with Compl.	MPM
Multiple Abstract	ion Levels			

Software?	Model Everything!	Compl. Causes	Dealing with Compl.	Μ
Multiple Abstractic				

1PM

Abstraction Relationship

foundation: the information contained in a model M. Different questions (properties) P = I(M) which can be asked concerning the model.


These questions either result in true or false.

Abstraction and its opposite, refinement are relative to a non-empty set of questions (properties) *P*.

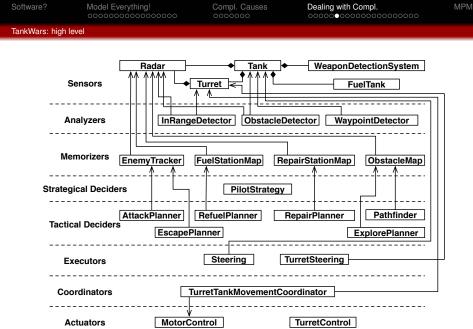
- If M_1 is an *abstraction* of M_2 with respect to P, for all $p \in P$: $M_1 \models p \Rightarrow M_2 \models p$. This is written $M_1 \sqsupseteq_P M_2$.
- M_1 is said to be a *refinement* of M_2 iff M_2 is an *abstraction* of M_1 . This is written $M_1 \sqsubseteq_P M_2$.

tware?	Model Everything!	С
	00000000000000000	

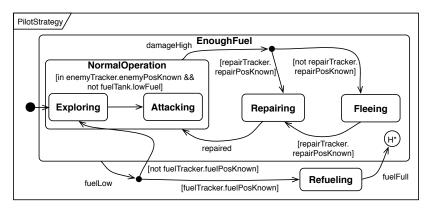
Most Appropriate Formalism (Minimizing Accidental Complexity)

Software?

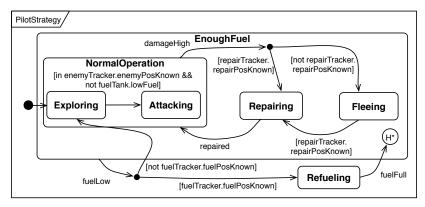
Model Everything!


Compl. Causes

Dealing with Compl.


Most Appropriate Formalism (Minimizing Accidental Complexity)

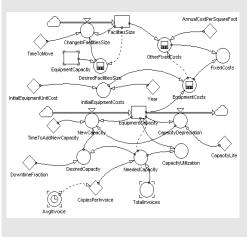
www.planeshift.it Massively Multiplayer Online Role Playing games need Non-Player Characters (NPCs)

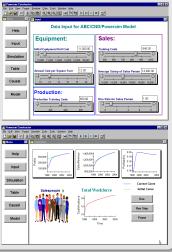


Jörg Kienzle, Alexandre Denault, Hans Vangheluwe. Model-Based Design of Computer-Controlled Game Character Behavior. MoDELS 2007: 650-665

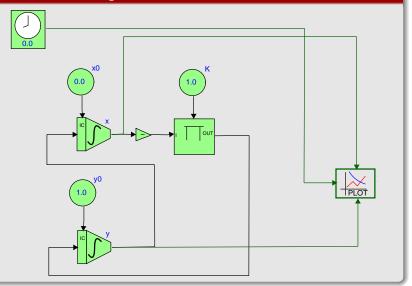
Jörg Kienzle, Alexandre Denault, Hans Vangheluwe. Model-Based Design of Computer-Controlled Game Character Behavior. MoDELS 2007: 650-665

Could have used production rules instead of Statecharts

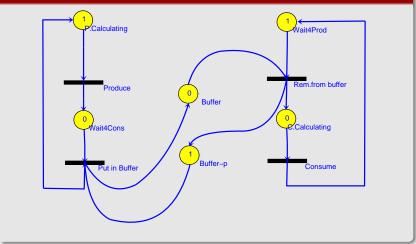

Eugene Syriani, Hans Vangheluwe: Programmed Graph Rewriting with DEVS. AGTIVE 2007: 136-151


Software?

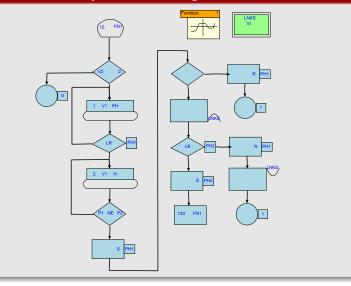
Model Everything!


Compl. Causes

"Management Flight Simulator" using Forrester System Dynamics model



Causal Block Diagram model of Harmonic Oscillator


Petri Net model of Producer – Consumer

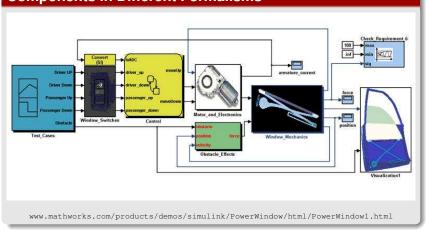
Model Everything!

Compl. Causes

Dealing with Compl.

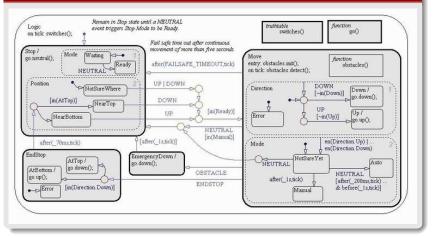
Model Everything!

Compl. Causes


Dealing with Compl.

Multiple Formalisms: Power Window

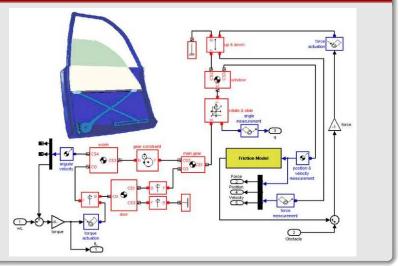
Software?	Model Everything!	Compl. Causes	Dealing with Compl.	MPM
Multi-Formalism				


Components in Different Formalisms

Software?	Model Everything!	Compl. Causes	De

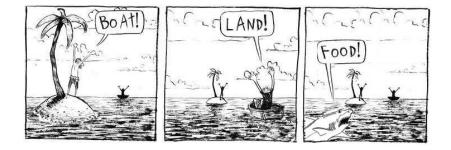
Multi-Formalism

Controller, using Statechart(StateFlow) formalism


0					\sim	
- S	ot	tw	ar	e		

Model Everything!

Compl. Causes


Multi-Formalism

Mechanics subsystem

Software?	Model Everything!

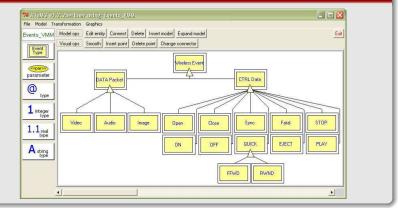
Multiple Views/Concerns/Aspects

Software?	Model Everything!

Multiple Views/Concerns/Aspects

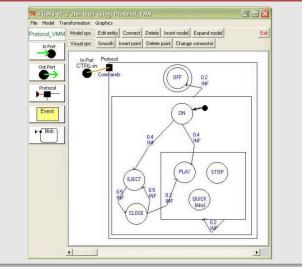
Wireless Home Entertainment System

Software?	Model Everything!	Compl. Causes	Dealing with Compl.
			000000000000000000000000000000000000000


Multiple (consistent !) Views (in \neq Formalisms)

Software?	Model Everything!	Compl. Causes	Dealing with Compl.
			000000000000000000000000000000000000000

View: Events Diagram


Multiple Views/Concerns/Aspects

MPM

				~
- S	OTT	wa	re	

View: Protocol Statechart

Software?	Model Everything!

Multiple Views/Concerns/Aspects

No Free Lunch!

Solutions often introduce their own accidental complexity

Software?	Model Everything!

Multiple Views/Concerns/Aspects

No Free Lunch!

Solutions often introduce their own accidental complexity

multiple abstraction levels (need morphism)

Multiple Views/Concerns/Aspects

No Free Lunch!

Solutions often introduce their own accidental complexity

- multiple abstraction levels (need morphism)
- optimal formalism (need precise meaning)

Multiple Views/Concerns/Aspects

No Free Lunch!

Solutions often introduce their own accidental complexity

- multiple abstraction levels (need morphism)
- optimal formalism (need precise meaning)
- multiple formalisms (need relationship)

Multiple Views/Concerns/Aspects

No Free Lunch!

Solutions often introduce their own accidental complexity

- multiple abstraction levels (need morphism)
- optimal formalism (need precise meaning)
- multiple formalisms (need relationship)
- multiple views (need **consistency**)

MPM

Multiple Views/Concerns/Aspects

No Free Lunch!

Solutions often introduce their own accidental complexity

- multiple abstraction levels (need morphism)
- optimal formalism (need precise meaning)
- multiple formalisms (need relationship)
- multiple views (need consistency)

ftware?	Model Ev
	000000

Multi-Paradigm Modelling (model everything, minimize accidental complexity)

- at the most appropriate level of abstraction
- using the most appropriate formalism(s)
 Class Diagrams, Differential Algebraic Equations, Petri Nets, Bond Graphs, Statecharts, CSP, Queueing Networks, Sequence Diagrams, Lustre/Esterel, ...

• with transformations as first-class models

Pieter J. Mosterman and Hans Vangheluwe.

Computer Automated Multi-Paradigm Modeling: An Introduction. Simulation 80(9):433-450, September 2004.

Special Issue: Grand Challenges for Modeling and Simulation.