(Place/Transition) Petri Nets

Hans.Vangheluwe@uantwerpen.be

Petri Nets

- 1. Finite State Automata
- 2. Petri net notation and definition (no dynamics)
- 3. Introducing State: Petri net marking
- 4. Petri net dynamics
- 5. Capacity Constrained Petri nets
- 6. Petri net models for ...
 - FSA
 - Nondeterminism
 - Data Flow Computation
 - Communication Protocols

- 7. Queueing Systems
- 8. Petri nets vs. State Automata
- 9. Analysis of Petri nets
 - Boundedness
 - Liveness and Deadlock
 - State Reachability
 - State Coverability
 - Persistence
 - Language Recognition
- 10. The Coverability Tree
- 11. Extensions: colour, time, ...
- 12. LTL and CTL

Finite State Automaton

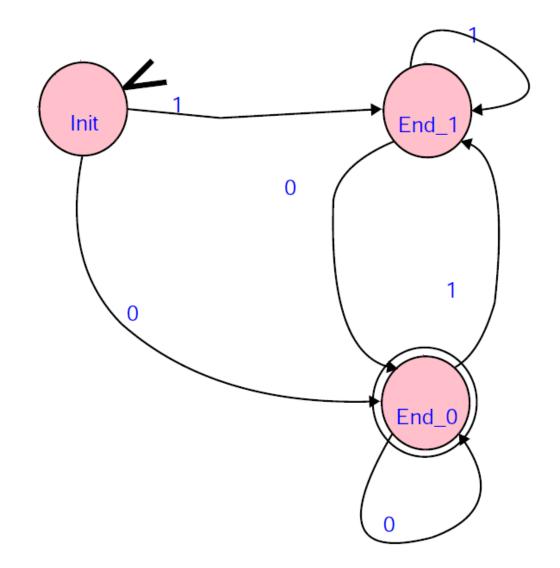
 (E, X, f, x_0, F)

- E is a finite alphabet
- \bullet X is a finite state set
- f is a state transition function, $f: X \times E \to X$
- x_0 is an initial state, $x_0 \in X$
- $\bullet~F$ is the set of final states

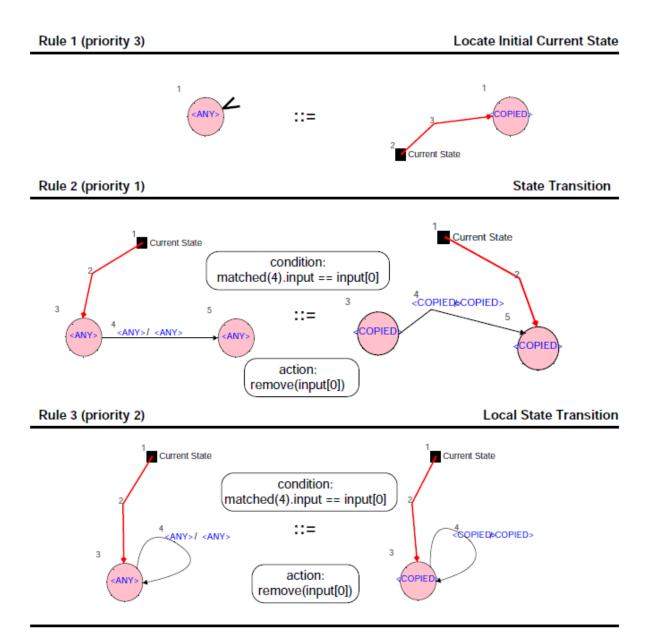
Dynamics (x' is next state):

$$x' = f(x, e)$$

FSA graphical/visual notation: State Transition Diagram

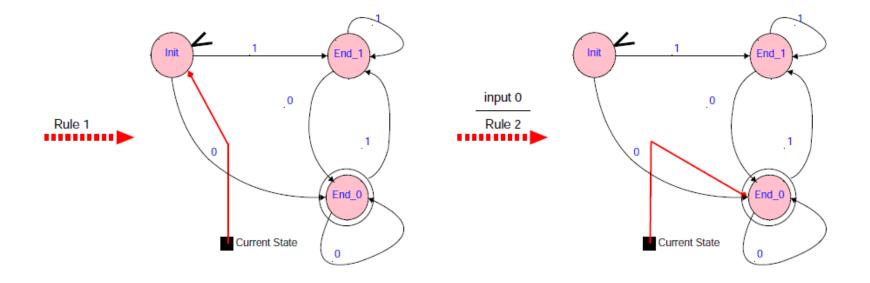


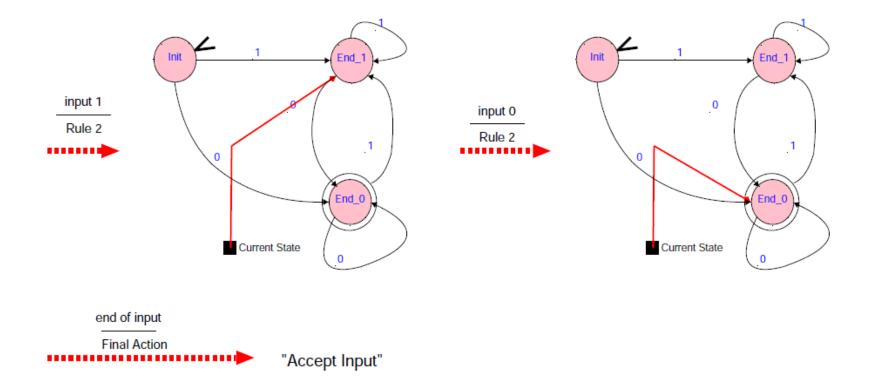
FSA Operational Semantics



Simulation steps

- AToM3 v0.2.1 using: FiniteStateAutomata · 🗆 🔀					
<u>F</u> ile <u>M</u> odel	Transformation	n <u>G</u> raphics			
FiniteStateAutom	ata Model ops	Edit entity C	onnect Delete Inse	ert model Expand model	Exit
State	Visual ops	Smooth Inse	rt point Delete point	Change connector	
			\sim	- Edit value $ imes$	
			.0 End_1 End_0	new edit delete 0 1 0 0 OK Cancel	
- Graph-Grammar execution controls					
Executing Graph-Grammar: FSASimulator					
Last executed rule:					
Ste			Continuous		





State Automaton

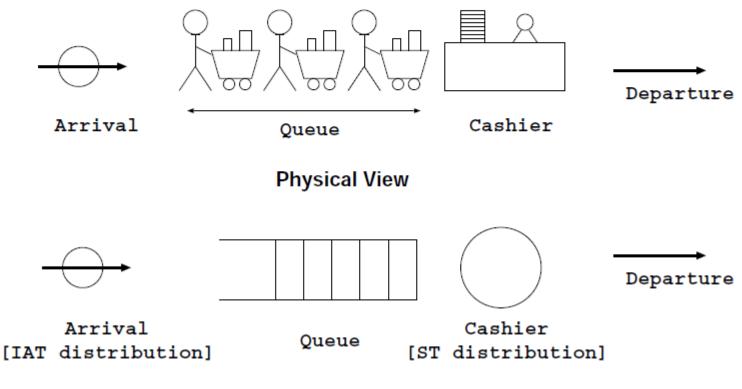
$$(E, X, \Gamma, f, x_0)$$

- E is a countable event set
- X is a countable state space
- $\Gamma(x)$ is the set of feasible or enabled events $x \in X, \Gamma(x) \subseteq E$
- f is a state transition function, $f: X \times E \to X$, only defined for $e \in \Gamma(x)$
- x_0 is an initial state, $x_0 \in X$

$$(E, X, \Gamma, f)$$

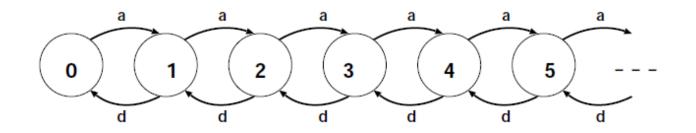
omits x_0 and describes a class of State Automata.

State Automata for Queueing Systems



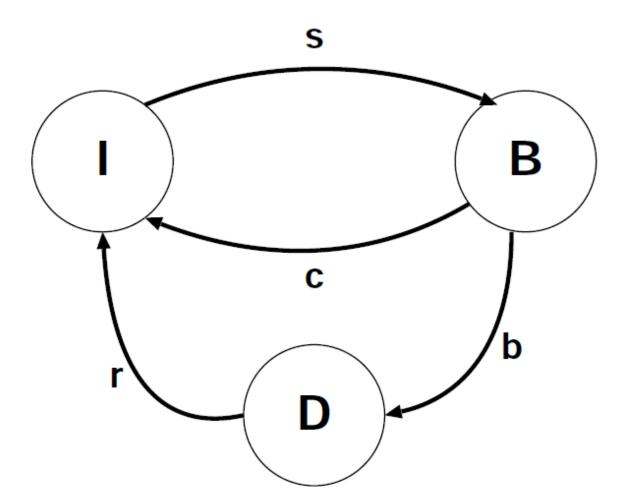
Abstract View

State Automata for Queueing Systems: customer centered



 $E = \{a, d\}$ $X = \{0, 1, 2, \ldots\}$ $\Gamma(x) = \{a, d\}, \forall x > 0; \Gamma(0) = \{a\}$ $f(x, a) = x + 1, \forall x \ge 0$ $f(x, d) = x - 1, \forall x > 0$

State Automata for Queueing Systems: server centered (with breakdown)



State Automata for Queueing Systems: server centered (with breakdown)

$$E = \{s, c, b, r\}$$

Events: s denotes service starts, c denotes service completes, b denotes breakdown, r denotes repair.

 $X = \{I, B, D\}$

State: I denotes idle, B denotes busy, D denotes broken down.

$$\Gamma(I) = \{s\}, \Gamma(B) = \{c, b\}, \Gamma(D) = \{r\}$$

$$f(I, s) = B, f(B, c) = I, f(B, b) = D, f(D, r) = I$$

Limitiations/extensions of State Automata

- Adding time ?
- Hierarchical modelling ?
- $\bullet\,$ Concurrency by means of $\times\,$
- States are represented explicitly
- Specifying control logic, synchronisation ?

Petri nets

- Formalism similar to FSA
- Graphical/Visual notation
- C.A. Petri 1960s
- Additions to FSA:
 - Explicitly (graphically/visually) represent when event is enabled \rightarrow describe control logic
 - Elegant notation of concurrency
 - Express non-determinism

Petri net notation and definition (no dynamics)

(P, T, A, w)

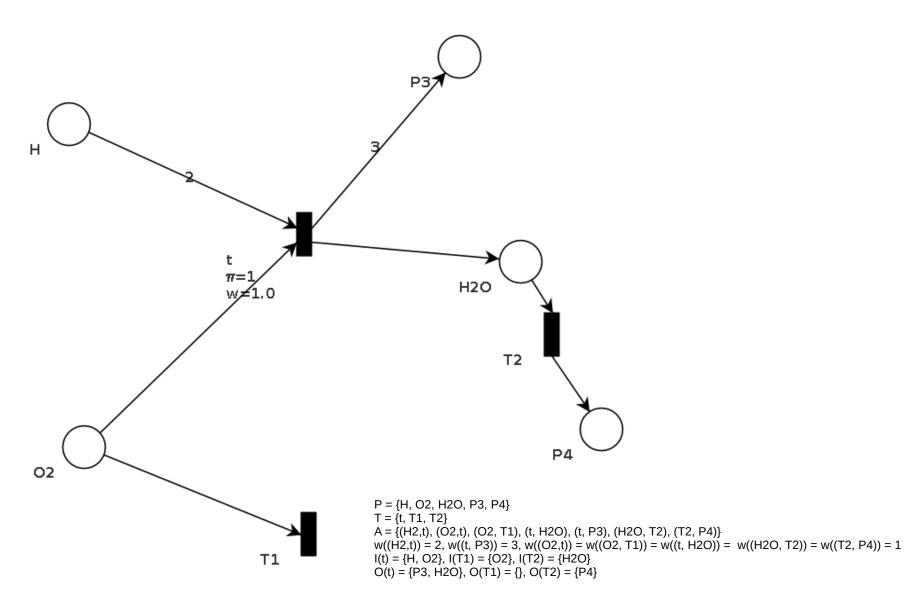
- $P = \{p_1, p_2, \ldots\}$ is a finite set of *places*
- $T = \{t_1, t_2, \ldots\}$ is a finite set of *transitions*
- $A \subseteq (P \times T) \cup (T \times P)$ is a set of *arcs*
- $w: A \to \mathbb{N}$ is a weight function

Note: no need for *countable* P and T.

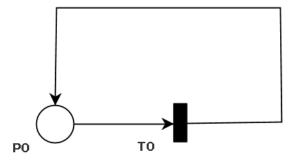
Derived Entities

- I(t_j) = {p_i : (p_i, t_j) ∈ A} set of *input places* to transition t_j
 (≡ conditions for transition)
- O(t_j) = {p_i : (t_j, p_i) ∈ A} set of *output places* from transition t_j
 (≡ affected by transition)
- Transitions \equiv events
- similarly: input- and output-transitions for p_i
- graphical/visual representation: *Petri net graph* (multigraph)

Example Petri Net



Pure Petri net



• No self-loops:

$$\not\exists p_i \in P, t_j \in T : (p_i, t_j) \in A, (t_j, p_i) \in A$$

• Can convert impure to pure Petri net

Introducing State: Petri net Markings

- Conditions met ? Use *tokens* in places
- Token assignment \equiv marking x

$$x:P\to\mathbb{N}$$

• A marked Petri net

$$(P, T, A, w, x_0)$$

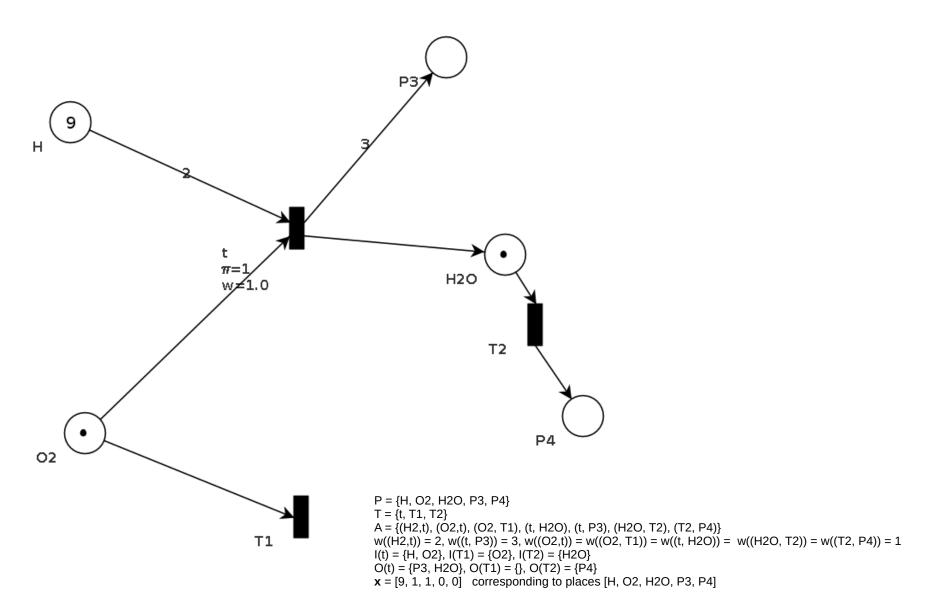
 x_0 is the *initial marking*

• The state **x** of a marked Petri net

$$\mathbf{x} = [x(p_1), x(p_2), \dots, x(p_n)]$$

Number of tokens need not be bounded (cfr. State Automata states).

Example Marked Petri Net



State Space of Marked Petri net

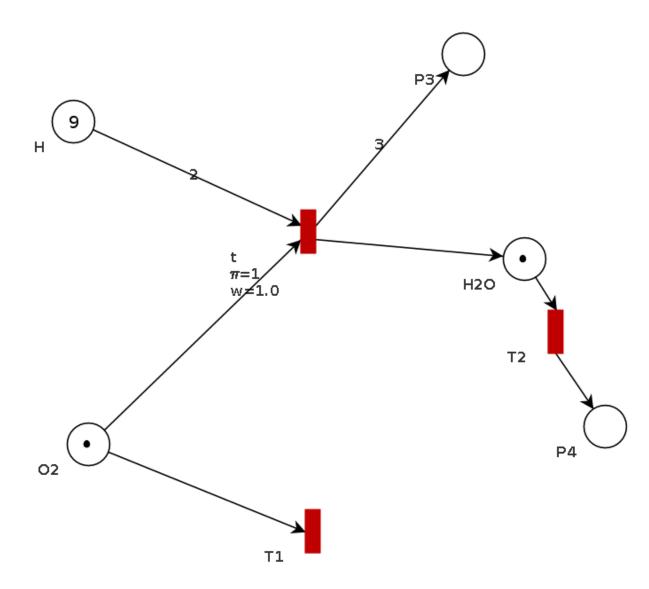
• All *n*-dimensional vectors of nonnegative integer markings

 $X = \mathbb{N}^n$

• Transition $t_j \in T$ is enabled if

 $x(p_i) \ge w(p_i, t_j), \forall p_i \in I(t_j)$

Example Marked Petri Net Enabled transitions in red



Petri Net Dynamics

State Transition Function f of marked Petri net (P, T, A, w, x_0)

$$f:\mathbb{N}^n\times T\to\mathbb{N}^n$$

is defined for transition $t_j \in T$ if and only if

$$x(p_i) \ge w(p_i, t_j), \forall p_i \in I(t_j)$$

If $f(\mathbf{x}, t_j)$ is defined, set $\mathbf{x}' = f(\mathbf{x}, t_j)$ where

$$x'(p_i) = x(p_i) - w(p_i, t_j) + w(t_j, p_i)$$

- State transition function f based on *structure* of Petri net
- Number of tokens need not be conserved (but can)

Algebraic Description of Dynamics

• Firing vector \mathbf{u} : transition j firing

$$\mathbf{u} = [0, 0, \dots, 1, 0, \dots, 0]$$

• Incidence matrix A :

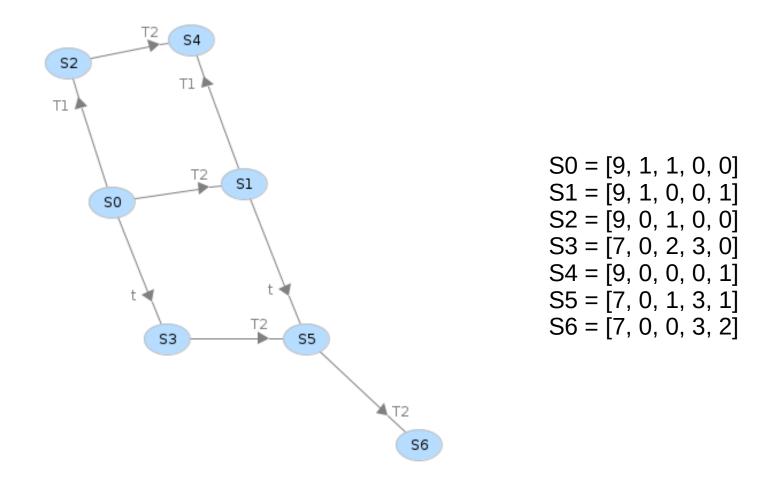
$$a_{ji} = w(t_j, p_i) - w(p_i, t_j)$$

• State Equation

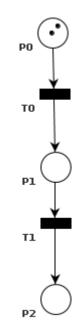
$$\mathbf{x}' = \mathbf{x} + \mathbf{u}\mathbf{A}$$

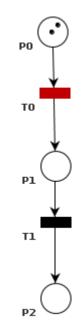
Semantics

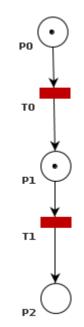
- sequential vs. parallel
- Handle nondeterminism:
 - 1. User choice
 - 2. Priorities
 - 3. Probabilities (Monte Carlo)
 - 4. Reachability Graph (enumerate all choices)

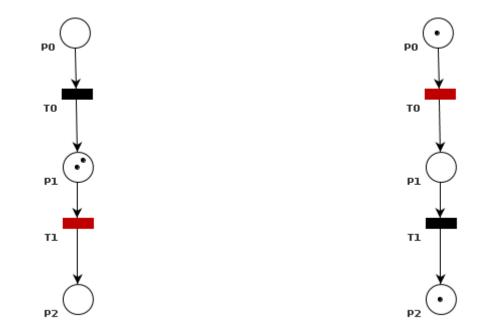


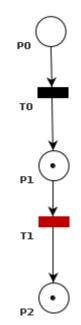
Marking corresponds to [H, O2, H2O, P3, P4]

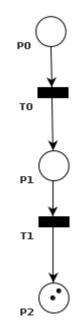


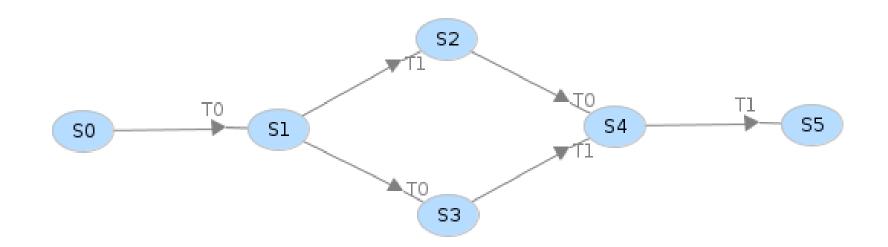






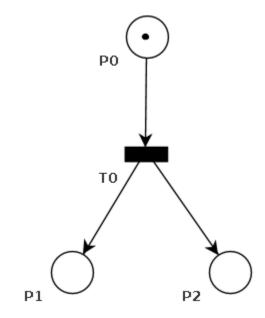




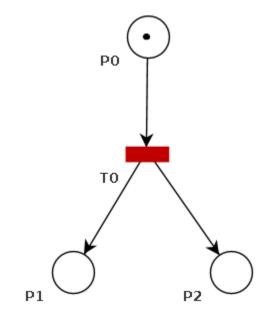


S0 = [2, 0, 0] S1 = [1, 1, 0] S2 = [1, 0, 1] S3 = [0, 2, 0] S4 = [0, 1, 1]S5 = [0, 0, 2]

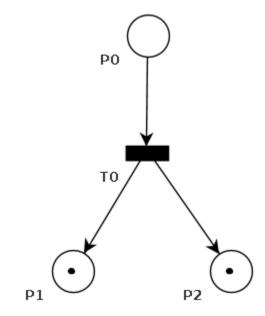
Pattern: split



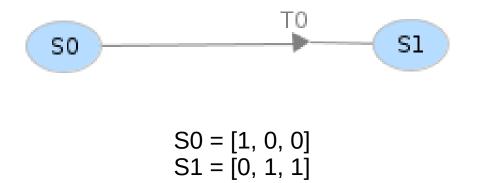
Pattern: split

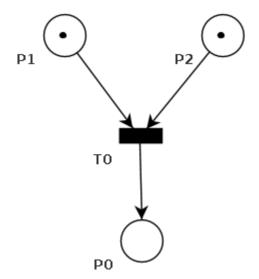


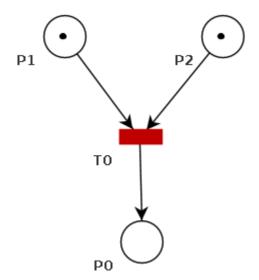
Pattern: split

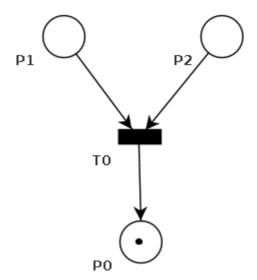


Pattern: split



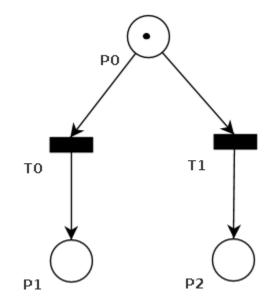


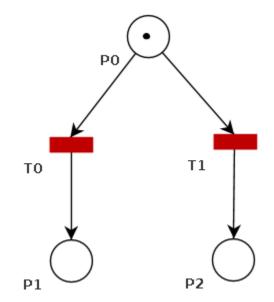


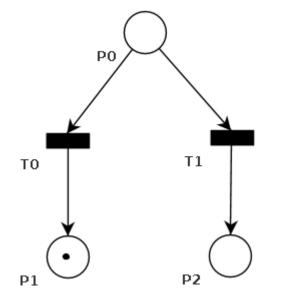


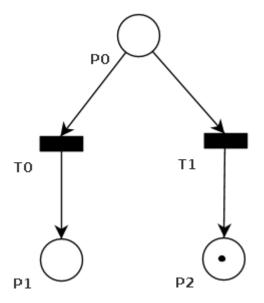
$$S0 = [1, 1, 0]$$

 $S1 = [0, 0, 1]$



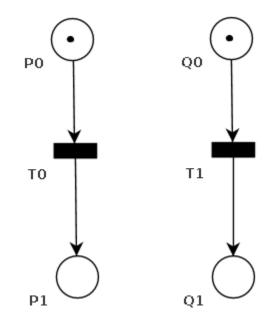


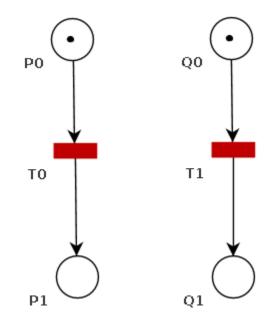


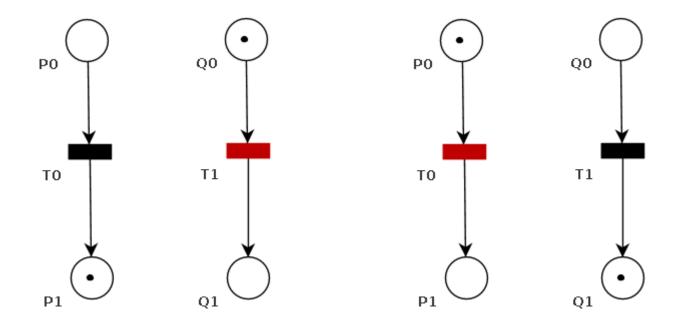


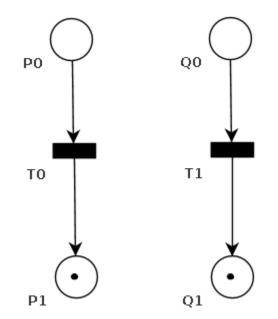
$$S0 = [1, 0, 0]$$

 $S1 = [0, 0, 1]$
 $S2 = [0, 1, 0]$

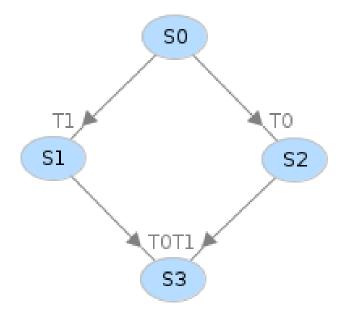




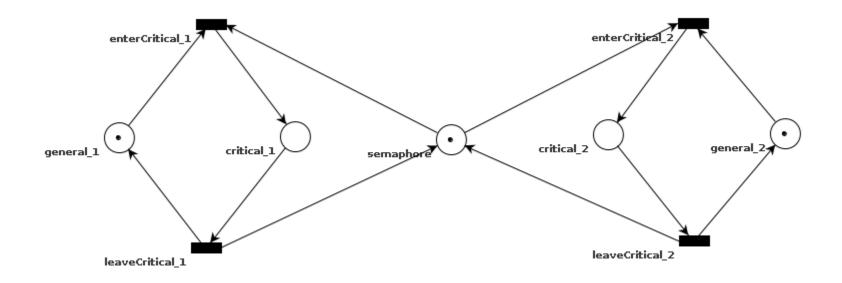


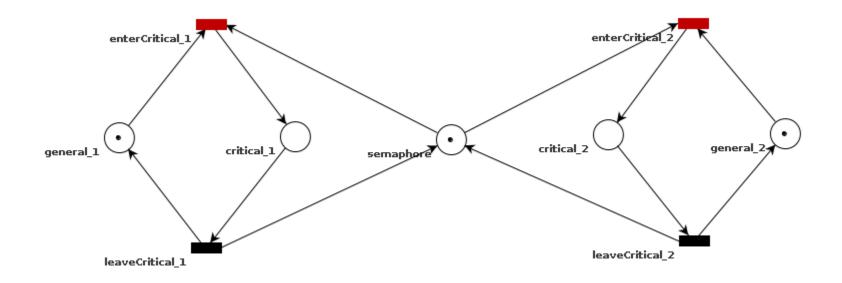


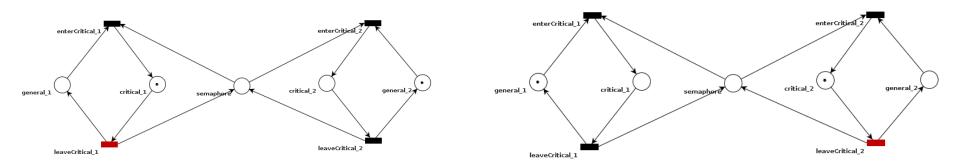
parallel indepencence, confluence "diamond" pattern

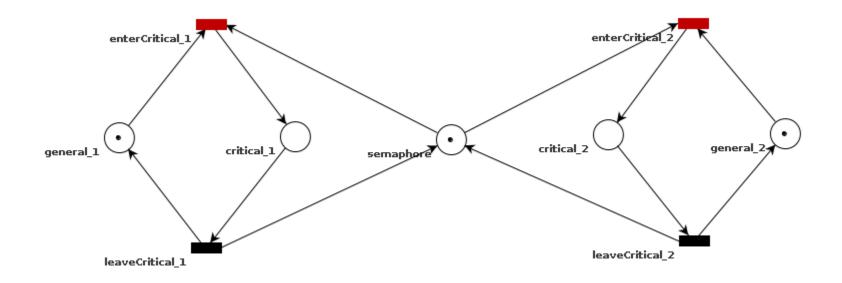


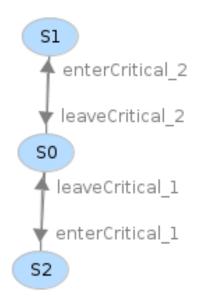
S0 = [1, 0, 1, 0] S1 = [0, 1, 1, 0] S2 = [1, 0, 0, 1]S3 = [0, 1, 0, 1]



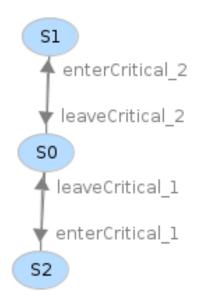








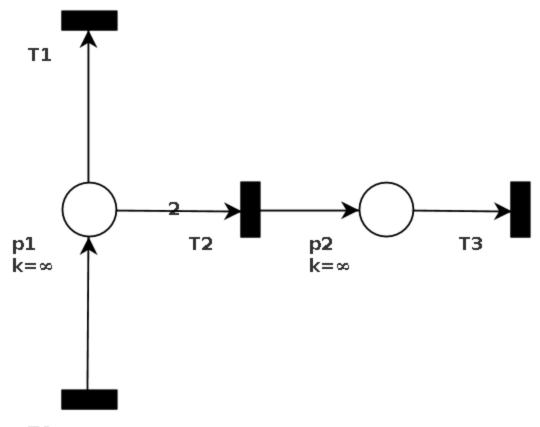
S0 = [1, 0, 1, 0, 1] S1 = [1, 0, 0, 1, 0]S2 = [0, 1, 0, 0, 1]



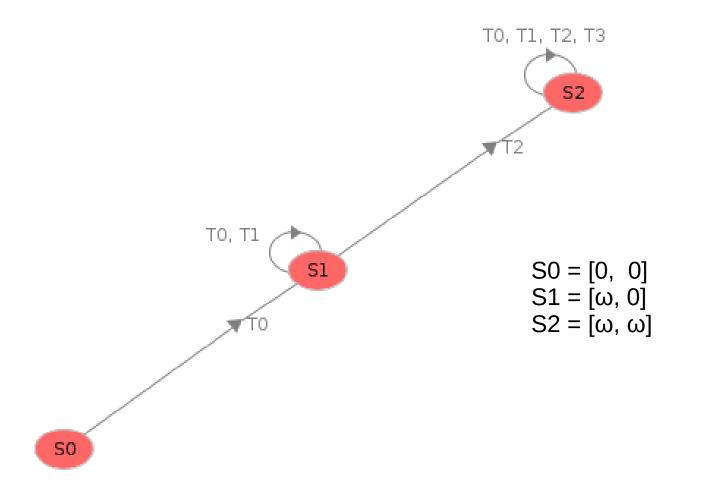
S0 = [1, 0, 1, 0, 1] S1 = [1, 0, 0, 1, 0]S2 = [0, 1, 0, 0, 1]

[*, 1, *, 1, *] **reachable** in some path?

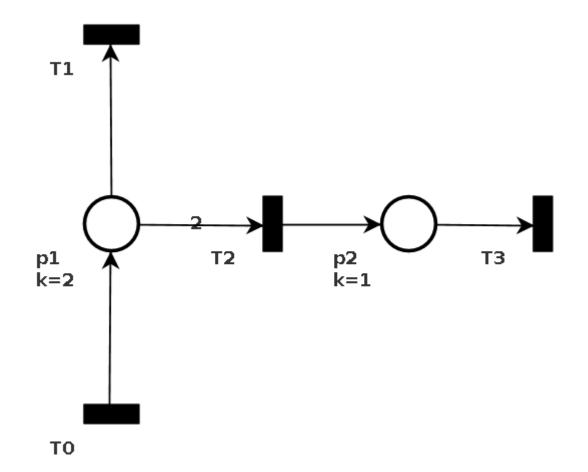
Infinite Capacity Petri net



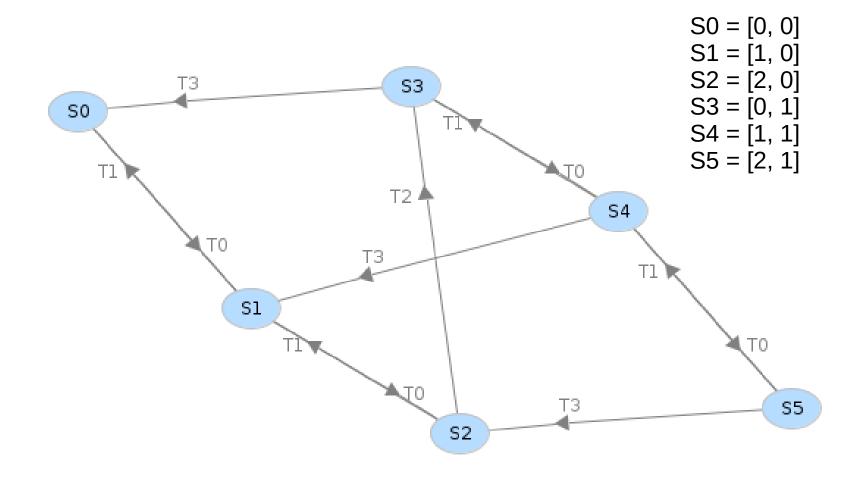
Infinite Capacity Petri net



Finite Capacity Petri net (FCPN)



Finite Capacity Petri net (FCPN)

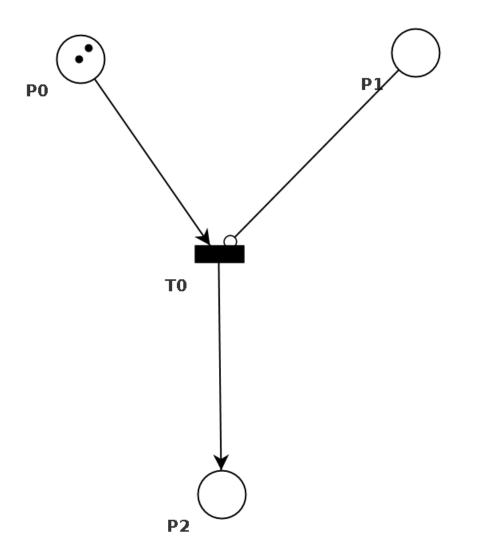


Finite Capacity Petri net as Infinite Capacity net

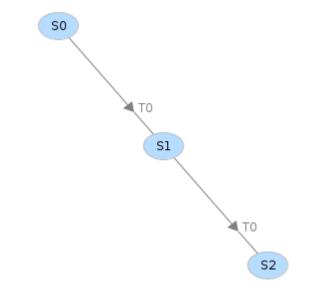
Can transform to infinite capacity net

- 1. Add complimentary place p' with initial marking $x_0(p') = K(p)$
- 2. Between each transition t and complimentary places p'
 - add arcs (t, p') or (p', t) where
 - w(t, p') = w(p, t)
 - w(p',t) = w(t,p)

P/T PN with Inhibitor Arc (makes Turing equiv.)



P/T PN with Inhibitor Arc (makes Turing equiv.)



S0 = [2, 0, 0]S1 = [1, 0, 1]S2 = [0, 0, 2]

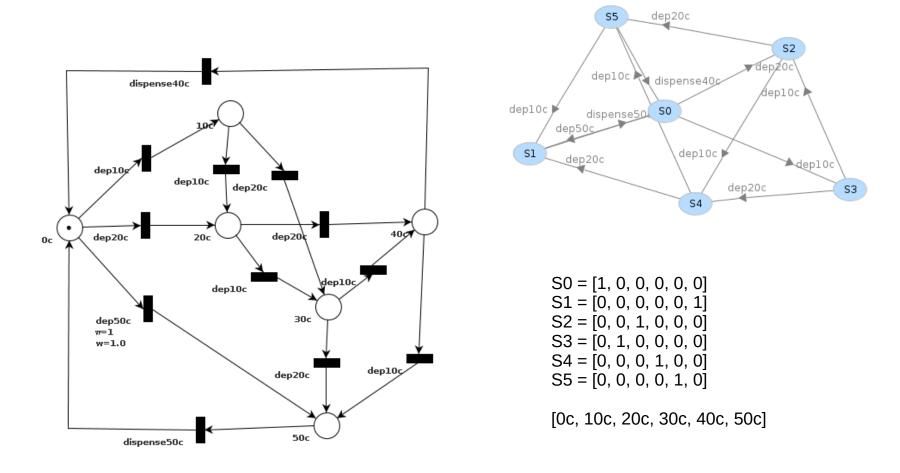
P/T PN with Inhibitor Arc (finite capacity)

Representing a Petri net as a State Machine

Construct Reachability Graph

- Reachability Graph is State Machine
- States are tuples (p_1, p_2, \ldots, p_n)
- Events correspond to t_i firing
- May be infinite (ω)

Finite State Automaton represented as a Petri Net



modelling the "current state" \rightarrow single token

Representing a State Machine as a Petri net

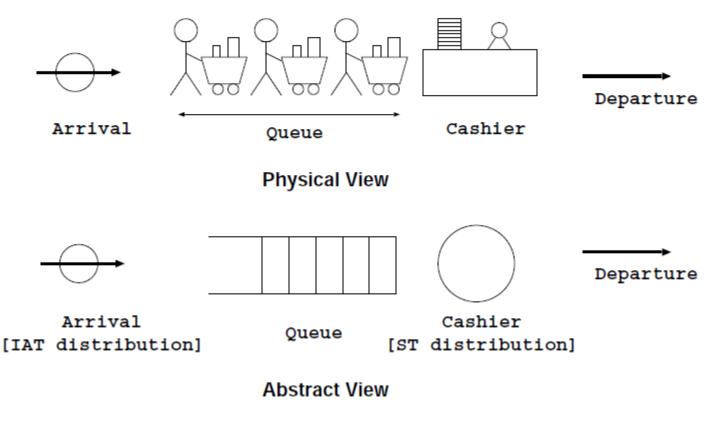
- 1. no output
- 2. with output

 \Rightarrow automatic (though inefficient) transformation

FSA without output

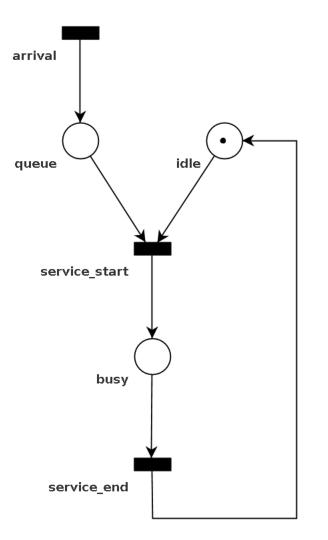
FSA with output

Petri net models for Queueing Systems

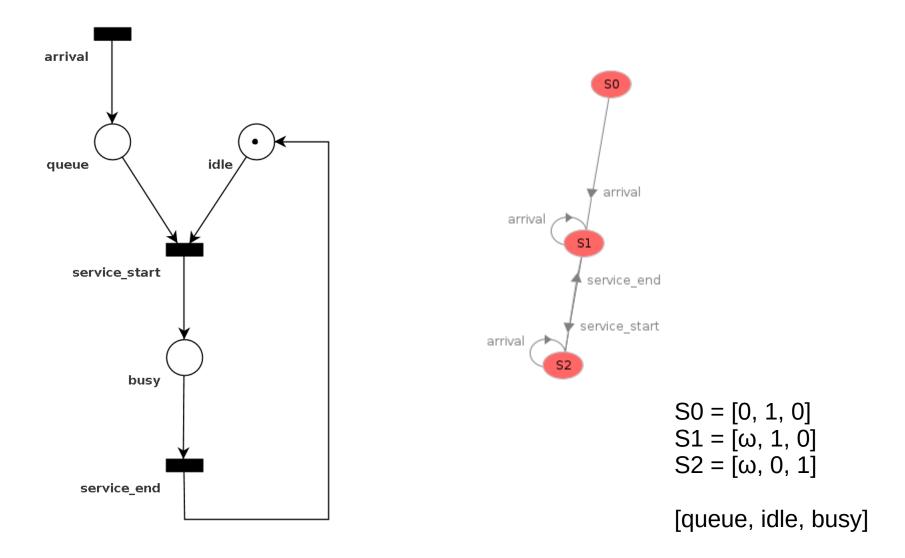


Capacity Constraints for Resource Conservation

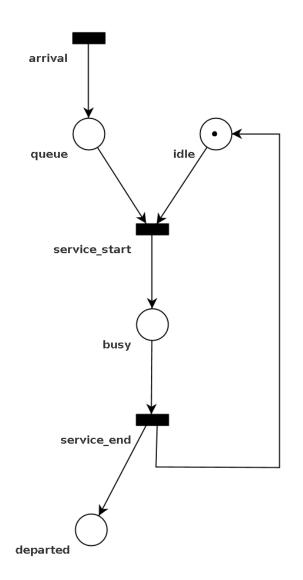
Simple Server/Queue



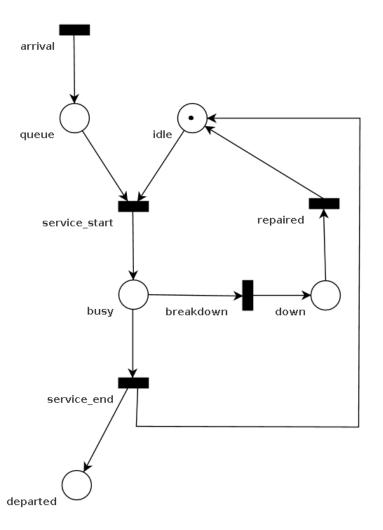
Simple Server/Queue



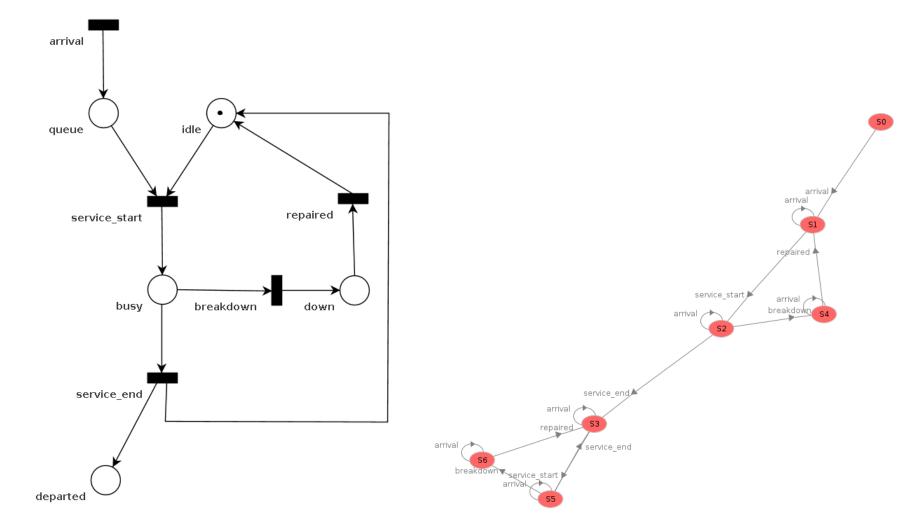
Simple Server/Queue departure modelled explicitly



Simple Server/Queue with server breakdown (and repair)



Simple Server/Queue with server breakdown (and repair)



Modular Composition: Communication Protocol

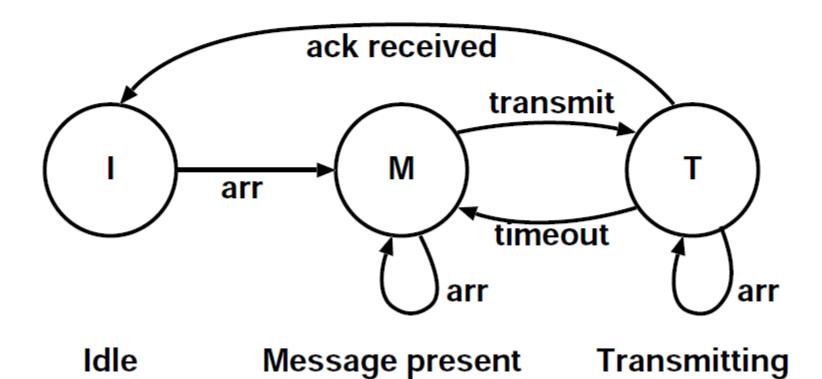
Build incrementally:

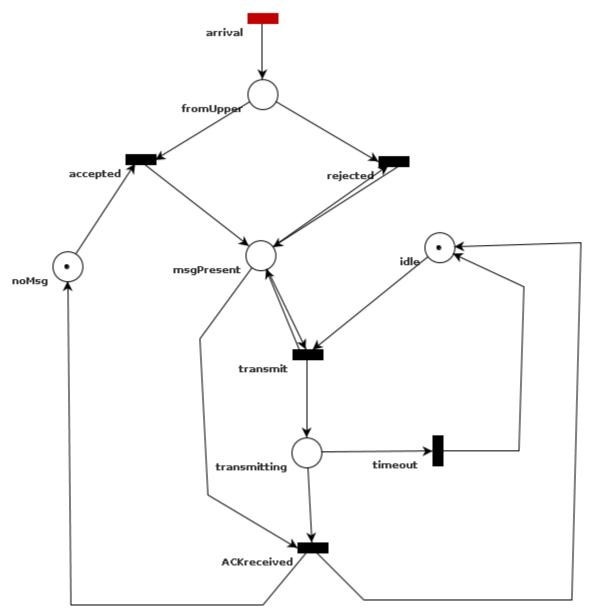
- 1. Single transmitter: FSA vs. Petri net
- 2. Two transmitters competing for channel

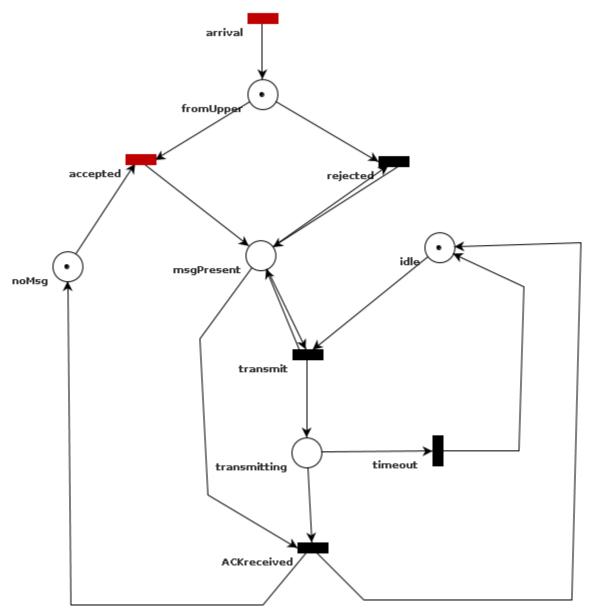
Pros/Cons of Petri net models (depends on goals !):

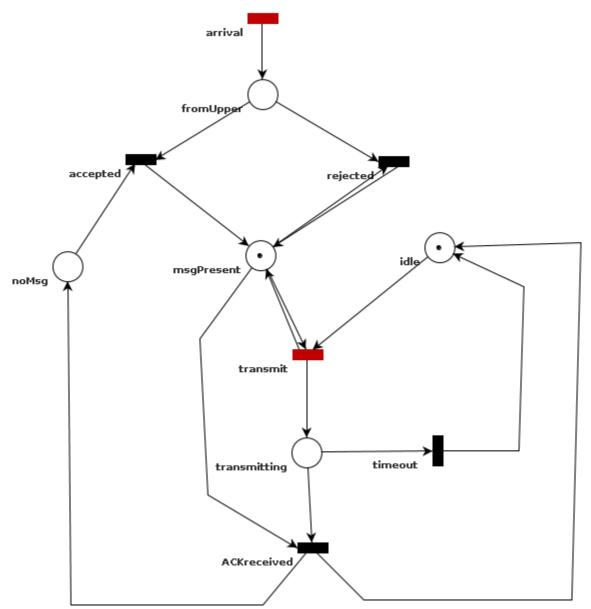
- Petri net is more complex than FSA for single transmitter
- More insight
- Incremental modelling
- Modular modelling
- Intuitive modelling of concurrency

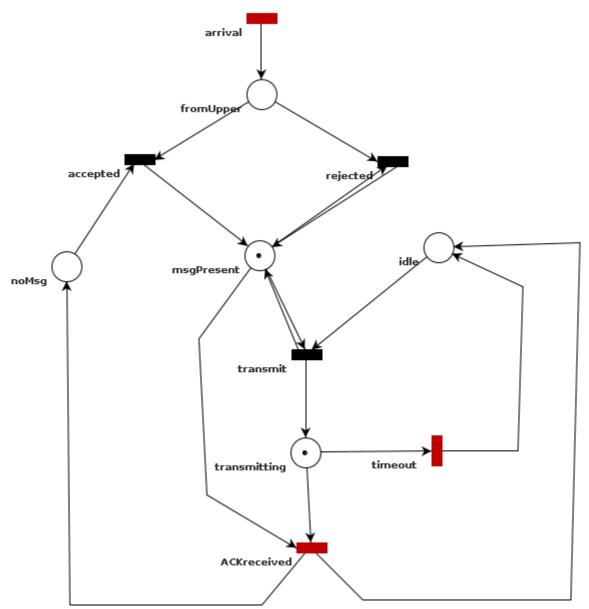
Single Transmitter FSA

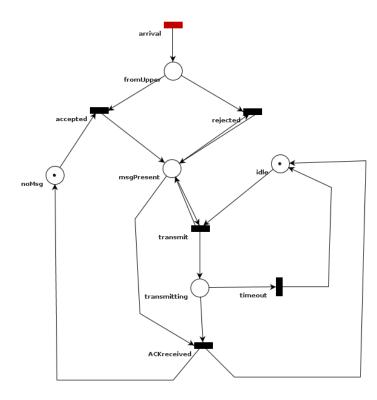


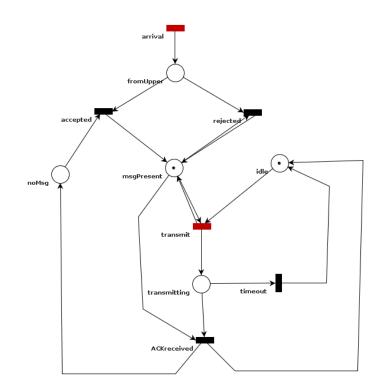




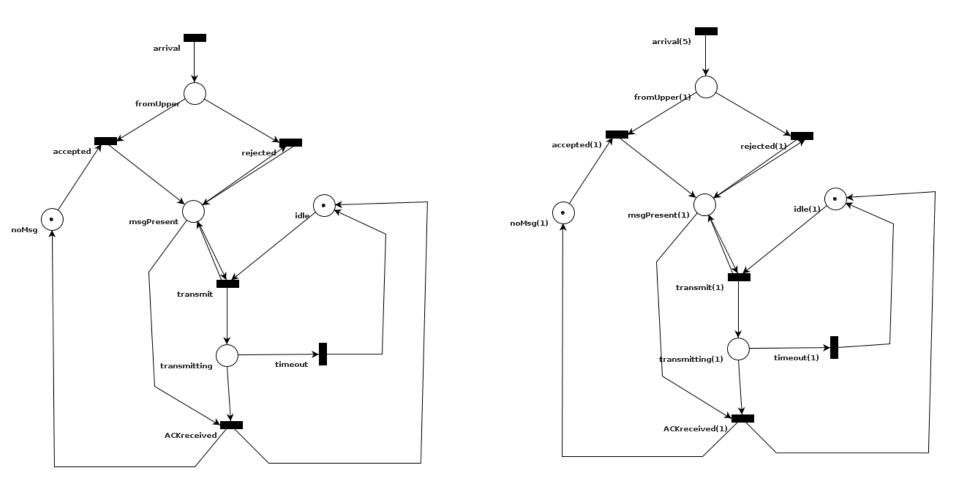




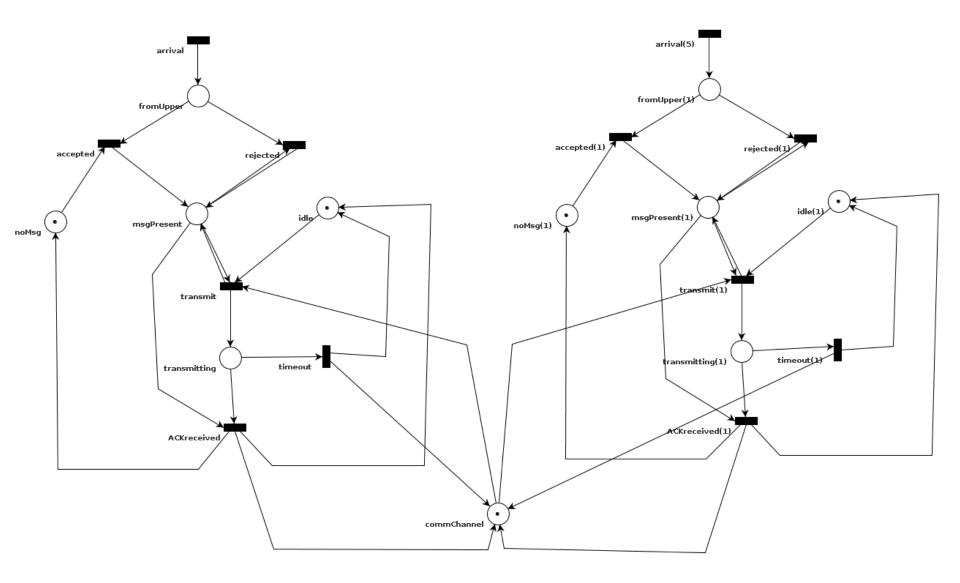




Two independent transmitters



Two transmitters competing for a single communication channel



Analysis of Petri nets

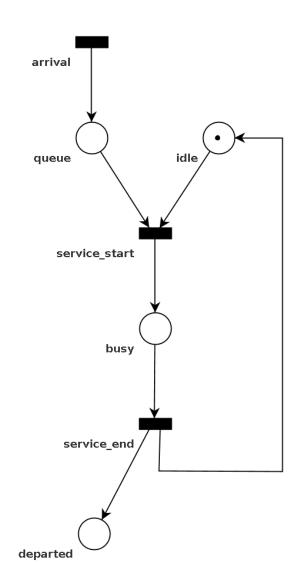
Analysis of *logical* or *qualitative* behaviour. Resource sharing \Rightarrow *fair* usage of resources:

- Boundedness
- Conservation
- Liveness and Deadlock
- State Reachability
- State Coverability
- Persistence
- Language Recognition

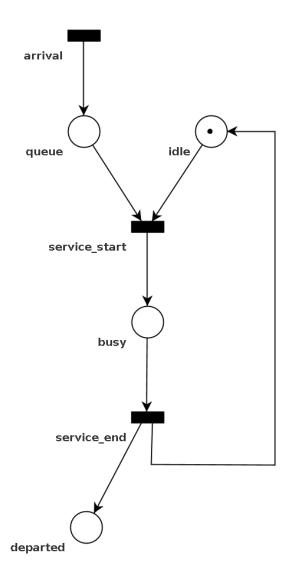
Boundedness

- Example: upper bound on number of customers in queue.
- Definition: A place p_i ∈ P in a Petri net with initial state x₀ is k-bounded or k-safe if x(p_i) ≤ k for all states in all possible sample paths.
- A 1-bounded place is called *safe*.
- If a place is k-bounded for some k, the place is *bounded*.
- If all places are bounded, the Petri net is *bounded*.

Bounded vs. Unbounded

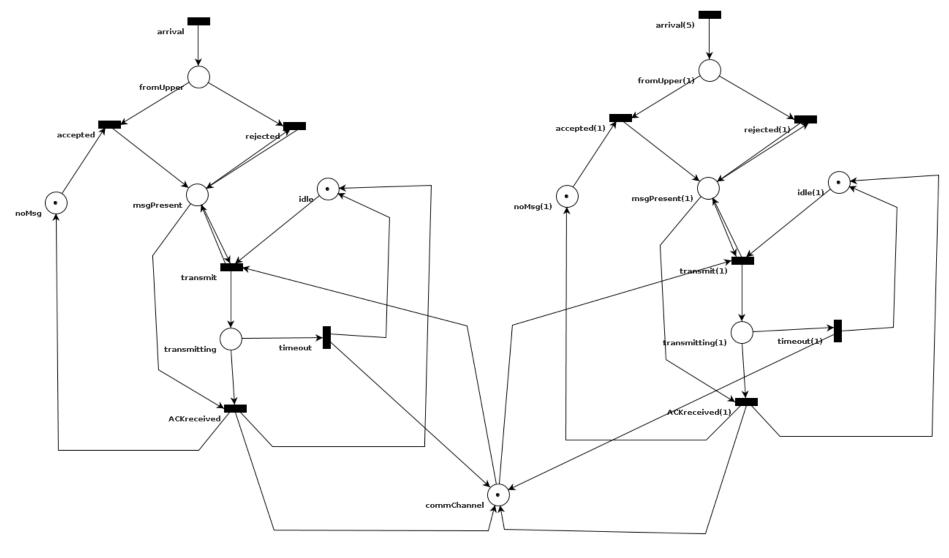


Conservation (invariants)



Sum of busy and idle marking is constant across all sample paths

Conservation (invariants): weighted sum



 $2 \times \text{transmitting} + 1 \times \text{idle} + 1 \times \text{commChannel} = 2$

Conservation

A Petri net with initial state x_0 is conservative with respect to $\gamma = [\gamma_1, \gamma_2, \dots, \gamma_n]$ if

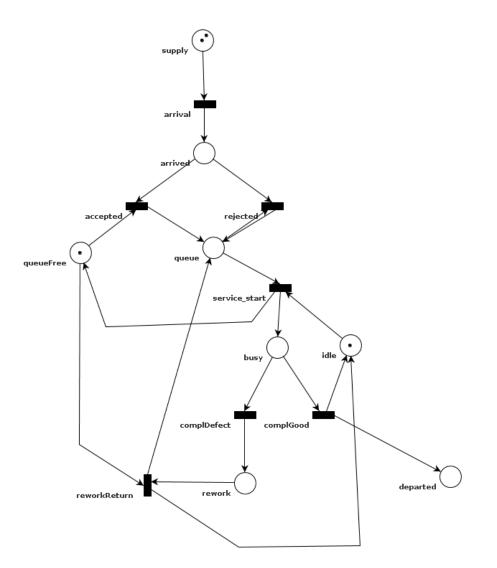
$$\sum_{i=1}^{n} \gamma_i x(p_i) = constant$$

for all states in all possible sample paths.

Liveness and Deadlock

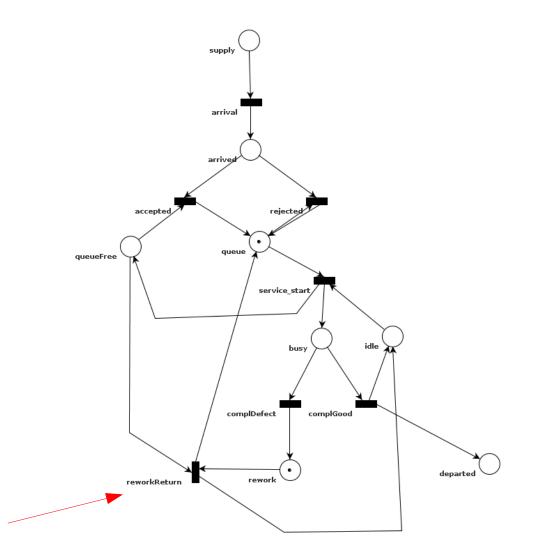
- Cyclic dependency \Rightarrow wait indefinitely
- Deadlock
- Deadlock avoidance: avoid certain states in sample paths

Deadlock in queueing system with rework



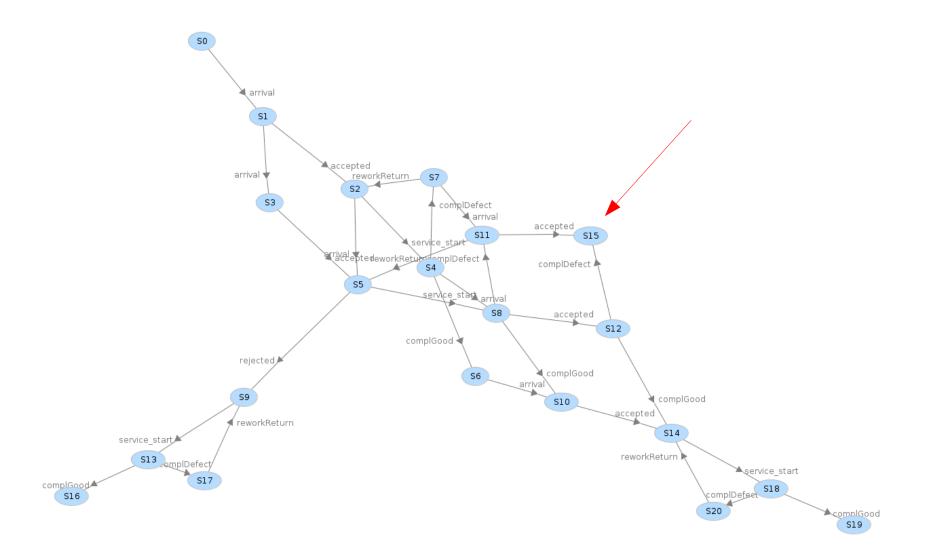
[queueFree, queue, rework] = $[0, 1, 1] \rightarrow \text{deadlock}$

Deadlock in queueing system with rework



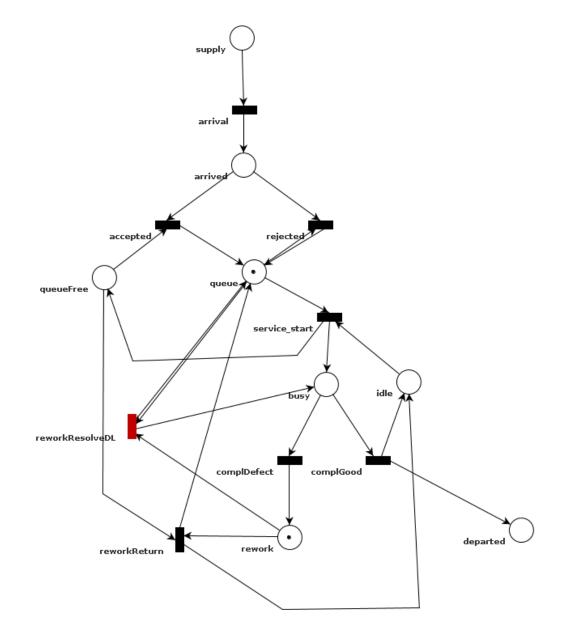
[queueFree, queue, rework] = $[0, 1, 1] \rightarrow \text{deadlock}$

Deadlock in queueing system with rework

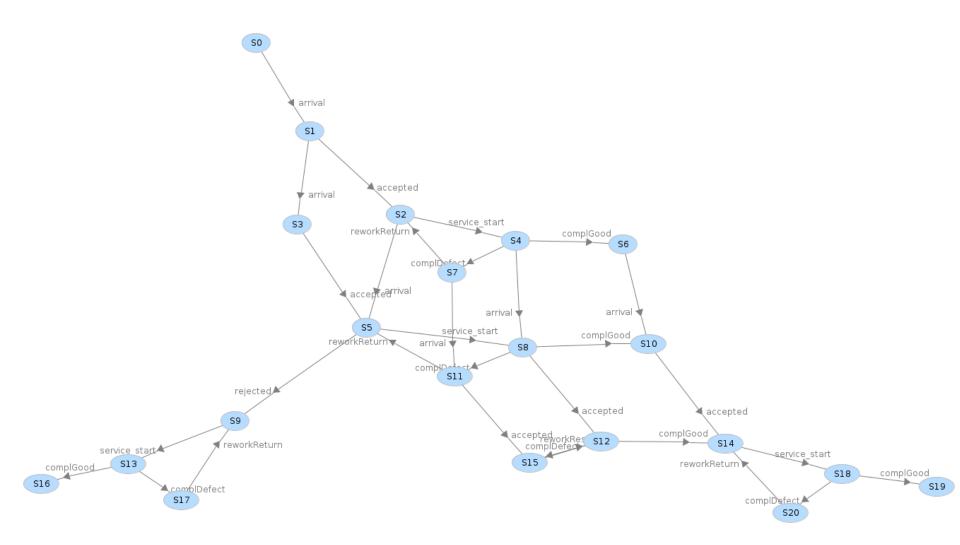


[queueFree, queue, rework] = $[0, 1, 1] \rightarrow \text{deadlock}$

Deadlock resolved (avoided)



Deadlock resolved (avoided)

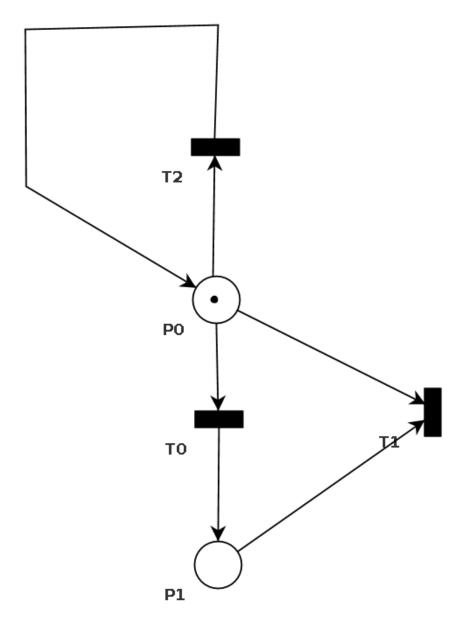


Liveness

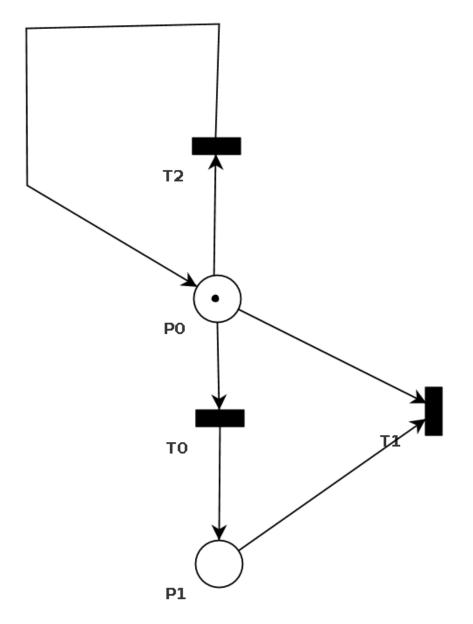
Given initial state \mathbf{x}_0 , a transition in a Petri net is:

- L0-live (dead): if the transition can never fire.
- L1-live: if there is some firing sequence from **x**₀ such that the transition can fire at least once.
- L2-live: if the transition can fire at least k times for some given positive integer k.
- L3-live: if there exists some infinite firing sequence in which the transition appears infinitely often.
- L4-live: if the transition is L1-live for every possible state reached from x₀.

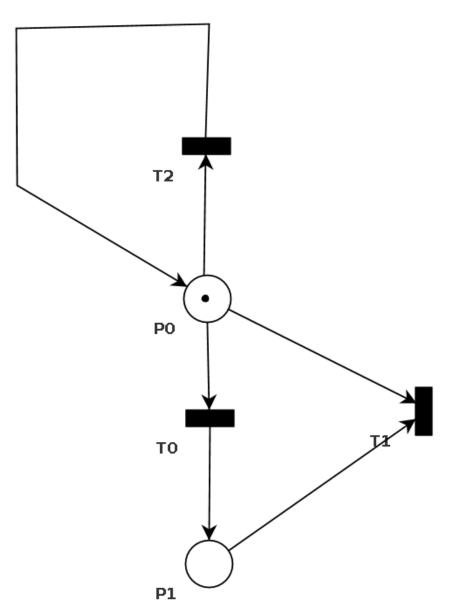
Liveness example

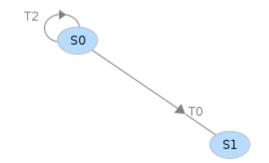


Liveness example



T1 is L1-live T2 is dead T3 is L3-live, not L4-live





S0 = [1, 0]S1 = [0, 1]

T1 is L1-live T2 is dead T3 is L3-live, not L4-live

State Reachability

- A state x in a Petri net is *reachable* from a state x₀ if there exists a sequence of transitions starting at x₀ such that the state eventually becomes x.
- Build/use reachability graph.
- Deadlock avoidance is a special case of reachability.

State Coverability

- In a Petri net with initial state x₀, a state y is *coverable* if there exists a sequence of transitions starting at x₀ such that the state eventually becomes x and x(p_i) ≥ y(p_i).
- Related to L1-liveness: minimum number of tokens required to enable a transition.

Persistence

- More than one transition enabled by the same set of conditions (choice, undeterminism).
- If one fires, does the other remain enabled ?
- A Petri net is *persistent* if, for any two enabled transitions, the firing of one cannot disable the other.
- Non-interruptedness (of multiple processes).

Language Recognition

Language defined by Petri net

 \equiv

set of transition sequences which can fire

Fairness

Time

Colour

Coverability Notation

- Root node
- Terminal node
- Duplicate node

Coverability Notation

• Node *dominance*

$$\mathbf{x} = [x(p_1), x(p_2), \dots, x(p_n)]$$
$$\mathbf{y} = [y(p_1), y(p_2), \dots, y(p_n)]$$
$$\mathbf{x} >_d \mathbf{y} (\mathbf{x} \text{ dominates } \mathbf{y})\text{if}$$
$$1. \ x(p_i) \ge y(p_i), \forall i \in \{1, \dots, n\}$$
$$2. \ x(p_i) > y(p_i) \text{ for at least some } i \in \{1, \dots, n\}$$

• The symbol ω represents *infinity*

 $\mathbf{x} >_d \mathbf{y}$

For all i such that $x(p_i) > y(p_i)$, replace $x(p_i)$ by ω

$$\omega + k = \omega = \omega - k$$

Coverability Tree Construction

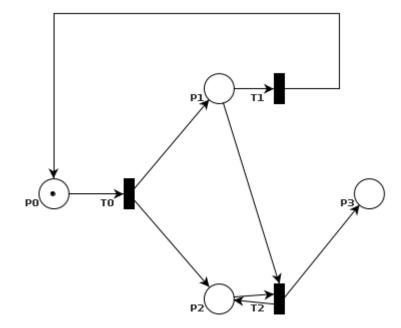
- 1. Initialize $\mathbf{x} = \mathbf{x}_0$ (initial state)
- 2. Fore each new node x, evaluate the transition function f(x, t_i) for all t_j ∈ T:
 (a) if f(x, t_j) is undefined for all t_j ∈ T, then x is a terminal node.
 (b) if f(x, t_j) is defined for some t_j ∈ T,

create a new node $\mathbf{x}' = f(\mathbf{x}, t_j)$.

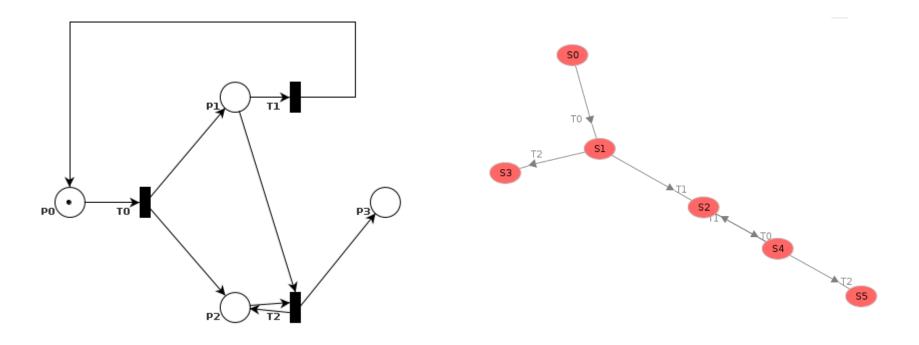
i. if
$$x(p_i) = \omega$$
 for some p_i , set $x'(p_i) = \omega$.

- ii. If there exists a node **y** in the path from root node \mathbf{x}_0 (included) to **x** such that $\mathbf{x}' >_d \mathbf{y}$, set $x'(p_i) = \omega$ for all p_i such that $x'(p_i) > y(p_i)$
- iii. Otherwise, set $\mathbf{x}' = f(\mathbf{x}, t_j)$.
- 3. Stop if all new nodes are either terminal or duplicate

Coverability Example



Coverability Example



Applications of the Coverability Tree

- Boundedness: ω does not appear in coverability tree
- Bounded Petri net \Rightarrow reachability graph
- Conservation: $\gamma_i = 0$ for ω positions
- Inverse problem: what are γ and C ?
- Coverability: inspect coverability tree
- Limitations: deadlock detection

Path Conditions: LTL and CTL