Causal Block Diagrams

Hans Vangheluwe

Physical Systems Modelling

- Problem-Specific (technological)
- Domain-Specific (e.g., translational mechanical)
- (general) Laws of Physics
- Power Flow/Bond Graphs (physical: energy/power)
- Computationally a-causal (Mathematical and Object-Oriented) ← Modelica
- Causal Block Diagrams (data flow)
- Numerical (Discrete) Approximations
- Computer Algorithmic + Numerical (Floating Point vs. Fixed Point)
- As-Fast-As-Possible vs. Real-time (XiL)
- Hybrid (discrete-continuous) modelling/simulation
- Hiding IP: Composition of Functional Mockup Units (FMI)
- Dynamic Structure

Paulo Carreira · Vasco Amaral · Hans Vangheluwe *Editors*

Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems

Gomes C., Denil J., Vangheluwe H. (2020) Causal-Block Diagrams: A Family of Languages for Causal Modelling of Cyber-Physical Systems. In: Carreira P., Amaral V., Vangheluwe H. (eds) Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-43946-0_4

Springer Open

	Hit wave stry	7	7	77		7	
Tine	FLAT CBD	5 yi	- FUAT 7FN - 74x	DEN 07A-I'ONAL	SEKAN 	TICSOPEKA TISNAL "	Houl
f Now?	ALGEBRAIC (ALG-(15D)		NO (20095 —————— Li7H (20085				
DV	DiscretF-Time (DT- (& D)						
tr.	CONTINUOUS -TIME ((T-(BD)						

IJ	["×"]	=	[' 23`]		
	MVX	ະ	9 J	mux E	<i>c</i> k

 $\begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ Alg-(BD) & = \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ Alg-(BD) & = \frac{1}{2} & -\frac{1}{2} \\ Mvy & = \frac{1}{2} \\ Mvy & = \frac$

SUCH -MVM mbom MVR = mvm se nvse =

$$m_{NM}, m_{VOO}, m_{VM}, m_{VO}, m_{VM}, m_{V}, m_{V}, m_{V} \in ER$$

$$such = -m_{VM} = 2$$

$$m_{VM} = 2$$

$$m_{VDO} = 1/m_{VM}$$

$$m_{VDO} = 1/m_{VM}$$

$$m_{VD} = m_{V} = 1/m_{V}$$

$$m_{VM} = m_{V} = -m_{V}$$

$$m_{VM} = 5$$

20-- 5 " SCHEDULE" 3 4 1 J (Y) 137 10

WOUST- CASE

iler # COMP

⊗(N)<mark>8(</mark>1) D(N2) D(N)

DIJTNAJO

DEPENDENCY GRAPH

schedule = [m, oom, k, mk, a]

DEPENDENCY GRAPH

schedule = [m, oom, k, mk, a]

depGraph = buildDepGraph(CBD)
schedule = topologicalSort(depGraph)

for block in schedule: block.compute()

 $\mathcal{F}(N)$

 \sim

2 UNKNOWNS 2 EQNS

$$n \times n + 4 \times y = 4$$

$$1 + x - 4 \times y = 4$$

$$\int_{0}^{1} \frac{1}{1 - 1} \int_{0}^{1} \frac{1}{2} \int_$$

$$\begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} y \\ z \end{bmatrix}$$

$$\begin{bmatrix} 2 & 2 \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ z \end{bmatrix}$$

"algebraic loop"

$$mv = 5$$

$$mv = 1$$

operational semantics schedule = topologicalSortAndLoopDetect(depGraph(CBD)) O(N+E)for genBlock in schedule: O(N)? genBlock.compute() Somé sens of (ourles # QNS (Size M) Solver (omrierity $\leq O(M^3)$ USVAlly $M \ll N$

	Hit wave stry	7	7	77		7	
Tine	FLAT CBD	5 yi	- FUAT 7FN - 74x	DEN 07A-I'ONAL	SEKAN 	TICSOPEKA TISNAL "	Houl
f Now?	ALGEBRAIC (ALG-(15D)		NO (20095 —————— Li7H (20085				
DV	DiscretF-Time (DT- (& D)						
tr.	CONTINUOUS -TIME ((T-(BD)						

Discovere - Time CBD (DT-CBD)

$$\begin{bmatrix} x & y \\ y & y \\ y$$

i = 0

```
while (not end_condition(i, ...)):
```

```
depGraph = buildDepGraph(CBD)
schedule = loopDetectAndTopSort(depGraph)
```

```
for gblock in schedule:
   gblock.compute()
```

i++

 $\mathsf{schedule} = [y, \, \mathsf{one}, \, x, \, [\![C]\!]$

IC.

¥ie №

i = 0

```
while (not end_condition(i, ...)):
```

```
depGraph = buildDepGraph(CBD)
schedule = loopDetectAndTopSort(depGraph)
```

```
for gblock in schedule:
  gblock.compute()
```

i++

```
i = 0
if (not end condition(i, ...)):
  depGraph = buildDepGraph(CBD)
  schedule = loopDetectAndTopSort(depGraph)
  for gblock in schedule:
    gblock.compute()
else:
  exit()
i = 1
while (not end condition(i, ...)):
  depGraph = buildDepGraph(CBD)
  schedule = loopDetectAndTopSort(depGraph)
  for gblock in schedule:
    gblock.compute()
```

HENORY OVER MOVE THAN 1 TIME - SCICE

HENORY OVER MOVE THAN 1 TIME - SCICE ٢C 71-1 2 ita = 1: - 2×21-1 7: = 7:-1 - 2× 7:-2 -2 VITL ٧ı X; ¥:-3 × Vu ٧ς

 $\boldsymbol{\alpha}_{i}$

	Hit wave stry	7	7	77		7	
Tine	FLAT CBD	5 yi	- FUAT 7FN - 74x	DEN 07A-I'ONAL	SEKAN 	TICSOPEKA TISNAL "	Houl
f Now?	ALGEBRAIC (ALG-(15D)		NO (20095 —————— Li7H (20085				
DV	DiscretF-Time (DT- (& D)						
tr.	CONTINUOUS -TIME ((T-(BD)						

Physical Systems Modelling

- Problem-Specific (technological)
- Domain-Specific (e.g., translational mechanical)
- (general) Laws of Physics
- Power Flow/Bond Graphs (physical: energy/power)
- Computationally a-causal (Mathematical and Object-Oriented) ← Modelica
- Causal Block Diagrams (data flow)
- Numerical (Discrete) Approximations
- Computer Algorithmic + Numerical (Floating Point vs. Fixed Point)
- As-Fast-As-Possible vs. Real-time (XiL)
- Hybrid (discrete-continuous) modelling/simulation
- Hiding IP: Composition of Functional Mockup Units (FMI)
- Dynamic Structure

	Hif WAW (HU	7		7	7
Tinf	FLAT CBD	5yn	74x	DENOTA-1: ONAL "WHAT	NTICSOPEKATIONAL "HOU"
} Now}	ALGEBRAIC (ALG-(BD)	-======================================	ND LOOPS Ui7H LOOPS	د ب	<i>د</i>
N	Discrete-Tine (DT- (& D)		D-> APPhox	\mathcal{L}	
TR.	((T-(BD)				

$$\frac{2}{N(-)} - \frac{1}{2} \frac{1}{2}$$

St «

HOOKE'S LAW

E=-kn na

HOOKE'S LAW

$$E = -k\pi$$
 πcc

$$F = m \alpha$$

$$F = m \frac{dv}{dt} = m \frac{dl}{dt^{2}}$$

$$V = \frac{dx}{dt}$$

$$\frac{dv}{dt} = -\frac{k}{m} \pi, v(t) \qquad \begin{array}{c} ODF \\ ODF \\ OVE ONAMY \\ DIFFERENTIAT \\ FONS \\ \frac{dx}{dt} = v, \pi(t) \qquad PDE \\ \frac{dx}{dt} = v, \pi(t) \qquad PDE \\ \frac{dx}{dt} = v, \pi(t) \qquad \begin{array}{c} x \\ V = \frac{k}{t} \\ \frac{dx}{dt} = v, \pi(t) \\ \frac{dx}{dt} = v, \pi(t) \end{array}$$

F = m **a** is <u>not</u> "rocket science"

HARMOVIC EQN.

$$\frac{d^{2}z}{dt^{2}} = -z, \quad z(o) = x_{,p}, \quad \frac{dx}{dt}(o) = u(o) = V_{,p} \quad \text{ODE}$$

$$\int_{0}^{1} \frac{dx}{dt} = V, \quad x(p) = x_{,p}$$

$$\int_{0}^{1} \frac{du}{dt} = -x, \quad v(p) = V_{,p}$$

HARMONIC EQN.

$$\frac{dl_{2}}{dt^{2}} = -2, \quad 2(0) = Y_{\beta}, \quad \frac{dn}{dt}(0) = U(0) = V_{\beta} \quad ODE$$

$$\int \frac{dr}{dt^{2}} = V, \quad n(\beta) = X_{\beta}$$

$$\int \frac{dr}{dt^{2}} = -n, \quad V(\beta) = V_{\beta}$$

Higher owner owners he

$$\frac{d^2 x}{dt^2 h} = \frac{d}{dt} \left(\frac{d}{dt} \left(\dots \frac{d}{dt} \right) \right)$$

 $\frac{d^2 x}{dt^2 h} = \frac{d}{dt} \left(\frac{d}{dt} \left(\dots \frac{d}{dt} \right) \right)$
 $\frac{d^2 x}{dt^2 h} = \frac{d^2 x}{dt} - \frac{d^2 x}{dt} - \frac{d^2 x}{dt} = \frac{d^2 x}{dt} - \frac{d^2 x}{dt} - \frac{d^2 x}{dt} = \frac{d^2 x}{dt} - \frac{d^2 x}{dt} - \frac{d^2 x}{dt} = \frac{d^2 x}{dt} - \frac{d^2 x}{dt} -$

$$\frac{dt_{x}}{dt^{1}} = -x , \quad \pi(o) = \neq , \quad \frac{d}{dt}(o) = 1 \qquad \frac{da}{dt} = x$$

$$\int \pi(t) = A \sin(t) + B \cos(t) \left(t + \zeta_{1}^{1}\right) \qquad \pi(t) = C^{x} + \zeta$$

$$\pi(t) = A \sin(t) + B \cos(t) \left(t + \zeta_{1}^{1}\right) \qquad \pi(t) = C^{x} + \zeta$$

$$\frac{d\pi}{dt} = A \cos(t) - B \sin(t)$$

$$\frac{dt_{x}}{dt} = -A \sin(t) - B \sin(t)$$

$$\frac{dt_{x}}{dt} = -A \sin(t) - B \sin(t) = -(A \sin(t) + B \cos(t)) = -\pi(t) \quad q.e.d.$$

$$\pi(o) = B = 4$$

$$\frac{d\pi}{dt} = 1$$

$$f(t) = \sin(t) \qquad \tilde{\pi}(t) \qquad \tilde{\pi}(t) \qquad \tilde{t} = i \times \Delta t$$

$$\frac{d\pi}{dt} = \sqrt{t}$$

$$\frac{d\pi}{dt} = \sqrt{t}$$

Discretization Scheme Fived

Thylon Exphnsion

	Hit wave stry	7	7	7		7	
Tine	FLAT CBD	5 yi	- FUAT 7FN - 74x	DEN 07A-I'ONAL	SEKAN 	TICSOPEKA TISNAL "	Houl
f Now?	ALGEBRAIC (ALG-(15D)	->[+]~	NO (20095 —————— Li7H (20085				
DV	DiscretF-Time (DT- (& D)						
tr.	CONTINUOUS -TIME ((T-(BD)						

- Problem-Specific (technological)
- Domain-Specific (e.g., translational mechanical)
- (general) Laws of Physics
- Power Flow/Bond Graphs (physical: energy/power)
- Computationally a-causal (Mathematical and Object-Oriented) ← Modelica
- Causal Block Diagrams (data flow)
- Numerical (Discrete) Approximations
- Computer Algorithmic + Numerical (Floating Point vs. Fixed Point)
- As-Fast-As-Possible vs. Real-time (XiL)
- Hybrid (discrete-continuous) modelling/simulation
- Hiding IP: Composition of Functional Mockup Units (FMI)
- Dynamic Structure

- Smallest non-zero positive number = $b^m x b^{-1} = 1/8$
- Largest non-zero positive number = $b^{M} x (1 b^{-s}) = 7/4$
- Smallest gap = $b^m x b^{-s} = 1/32$
- Largest gap = $b^{M} x b^{-s} = 1/4$
- Number of representable numbers = 2x((M-m)+1)x(b-1)xb^{s-1}+1 = 33
 ... fits into available bits? Optimal number of bits?
- Note: fill the gap around 0: de-normalized

- Problem-Specific (technological)
- Domain-Specific (e.g., translational mechanical)
- (general) Laws of Physics
- Power Flow/Bond Graphs (physical: energy/power)
- Computationally a-causal (Mathematical and Object-Oriented) ← Modelica
- Causal Block Diagrams (data flow)
- Numerical (Discrete) Approximations
- Computer Algorithmic + Numerical (Floating Point vs. Fixed Point)
- As-Fast-As-Possible vs. Real-time (XiL)
- Hybrid (discrete-continuous) modelling/simulation
- Hiding IP: Composition of Functional Mockup Units (FMI)
- Dynamic Structure

Model-Based System Design

MiL, HiL, SiL, ...

XiL: X = Model, Software, Processor, Hardware

Ken Vanherpen. A contract-based approach for multi-viewpoint consistency in the concurrent design of cyber-physical systems. PhD thesis University of Antwerp. 2018.

- Problem-Specific (technological)
- Domain-Specific (e.g., translational mechanical)
- (general) Laws of Physics
- Power Flow/Bond Graphs (physical: energy/power)
- Computationally a-causal (Mathematical and Object-Oriented) ← Modelica
- Causal Block Diagrams (data flow)
- Numerical (Discrete) Approximations
- Computer Algorithmic + Numerical (Floating Point vs. Fixed Point)
- As-Fast-As-Possible vs. Real-time (XiL)
- Hybrid (discrete-continuous) modelling/simulation
- Hiding IP: Composition of Functional Mockup Units (FMI)
- Dynamic Structure

- Problem-Specific (technological)
- Domain-Specific (e.g., translational mechanical)
- (general) Laws of Physics
- Power Flow/Bond Graphs (physical: energy/power)
- Computationally a-causal (Mathematical and Object-Oriented) ← Modelica
- Causal Block Diagrams (data flow)
- Numerical (Discrete) Approximations
- Computer Algorithmic + Numerical (Floating Point vs. Fixed Point)
- As-Fast-As-Possible vs. Real-time (XiL)
- Hybrid (discrete-continuous) modelling/simulation
- Hiding IP: Composition of Functional Mockup Units (FMI)
- Dynamic Structure

Functional Mock-up Interface (FMI)

- XML + Binary Representation for Models
 - Standard
 - Modelling Tool Independent
 - +/- Black box ...
- Composed FMUs still need "orchestration"

www.fmi-standard.org

Deconstructing an FMU

Model-Solver Interface Simulator-Environment Interface

 $t_0, \mathbf{p}, \text{inital values (a subset of } \{\dot{\mathbf{x}}_0, \mathbf{x}_0, \mathbf{y}_0, \mathbf{v}_0, \mathbf{m}_0\})$

v

meaningful operational semantics (Models of Computation)

Semantics

Physical Systems Modelling

- Problem-Specific (technological)
- Domain-Specific (e.g., translational mechanical)
- (general) Laws of Physics
- Power Flow/Bond Graphs (physical: energy/power)
- Computationally a-causal (Mathematical and Object-Oriented) ← Modelica
- Causal Block Diagrams (data flow)
- Numerical (Discrete) Approximations
- Computer Algorithmic + Numerical (Floating Point vs. Fixed Point)
- As-Fast-As-Possible vs. Real-time (XiL)
- Hybrid (discrete-continuous) modelling/simulation
- Hiding IP: Composition of Functional Mockup Units (FMI)
- Dynamic Structure

++ Dynamic Structure

	HienAulmy		-	77		77
Tine	FLAT CBD		- 74x	DENO7A-TI'ONAL	56K AN . "WHA7"	OPERATIONAL "HOU"
}Now?	ALGEBRAIC (ALG-(16D)	->+	Nd (
N	DiscretF-Tine (DT- (& D)					
TR.	CONTINUOUS -TILLE ((T-(BD)	~~ <u>~</u>				
	•					

- 1. DUILD DEV. GUAM UP20 3
- 2. PANIAL SON7/1001 DET UPD 3
- 3. COMPLETE DEP GRAMM M77 DON (B)
 - 4. FUL SONT/WOR PETER

HULTIPE TEST ALOCK FIXED POINT

74 Elevator model		×
● ●		
Quit		

Figure 4.10: Y-position of the elevator

Figure 4.11: Position of ball 1

Figure 4.12: Position of ball 2

