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Example Petri Net

P = {H, O2, H2O, P3, P4}
T = {t, T1, T2}
A = {(H,t), (O2,t), (O2, T1), (t, H2O), (t, P3), (H2O, T2), (T2, P4)}
w((H,t)) = 2, w((t, P3)) = 3, w((O2,t)) = w((O2, T1)) = w((t, H2O)) =  w((H2O, T2)) = w((T2, P4)) = 1
I(t) = {H, O2}, I(T1) = {O2}, I(T2) = {H2O}
O(t) = {P3, H2O}, O(T1) = {}, O(T2) = {P4}





Example Marked Petri Net

P = {H, O2, H2O, P3, P4}
T = {t, T1, T2}
A = {(H2,t), (O2,t), (O2, T1), (t, H2O), (t, P3), (H2O, T2), (T2, P4)}
w((H2,t)) = 2, w((t, P3)) = 3, w((O2,t)) = w((O2, T1)) = w((t, H2O)) =  w((H2O, T2)) = w((T2, P4)) = 1
I(t) = {H, O2}, I(T1) = {O2}, I(T2) = {H2O}
O(t) = {P3, H2O}, O(T1) = {}, O(T2) = {P4}
x = [9, 1, 1, 0, 0]   corresponding to places [H, O2, H2O, P3, P4]





Example Marked Petri Net
Enabled transitions in red







Example Marked Petri Net
Enabled transitions in red





Marking corresponds to [H, O2, H2O, P3, P4]

S0 = [9, 1, 1, 0, 0]
S1 = [9, 1, 0, 0, 1]
S2 = [9, 0, 1, 0, 0]
S3 = [7, 0, 2, 3, 0]
S4 = [9, 0, 0, 0, 1]
S5 = [7, 0, 1, 3, 1]
S6 = [7, 0, 0, 3, 2]

Example Marked Petri Net



Reachability graph = 
compact notation of all possible “sample paths” (behaviour traces) =

{ S0 -T1-> S2 -T2-> S4, S0 -T2-> S1 -T1-> S4,
 S0 -T2-> S1 -t-> S5 -T2-> S6, S0 -t-> S3 -T2-> S5 -T2-> S6} 

S0 = [9, 1, 1, 0, 0]
S1 = [9, 1, 0, 0, 1]
S2 = [9, 0, 1, 0, 0]
S3 = [7, 0, 2, 3, 0]
S4 = [9, 0, 0, 0, 1]
S5 = [7, 0, 1, 3, 1]
S6 = [7, 0, 0, 3, 2]

Example Marked Petri Net



Pattern: sequence



Pattern: sequence



Pattern: sequence





Pattern: sequence



Pattern: sequence



Pattern: sequence



Pattern: sequence

S0 = [2, 0, 0]
S1 = [1, 1, 0]
S2 = [1, 0, 1]
S3 = [0, 2, 0]
S4 = [0, 1, 1]
S5 = [0, 0, 2]  



Pattern: split



Pattern: split



Pattern: split



Pattern: split

S0 = [1, 0, 0]
S1 = [0, 1, 1] 



Pattern: join



Pattern: join



Pattern: join



Pattern: join

S0 = [1, 1, 0]
S1 = [0, 0, 1] 



Pattern: conflict, choice, decision



Pattern: conflict, choice, decision



Pattern: conflict, choice, decision



S0 = [1, 0, 0]
S1 = [0, 0, 1]
S2 = [0, 1, 0] 

Pattern: conflict, choice, decision



parallel indepencence, confluence



parallel indepencence, confluence



parallel indepencence, confluence



parallel indepencence, confluence



“parallel indepencence”
“confluence”
“diamond” pattern

S0 = [1, 0, 1, 0]
S1 = [0, 1, 1, 0]
S2 = [1, 0, 0, 1]
S3 = [0, 1, 0, 1] 



critical section, semaphore, mutex



critical section, semaphore, mutex



critical section, semaphore, mutex



critical section, semaphore, mutex



critical section, semaphore, mutex

S0 = [1, 0, 1, 0, 1]
S1 = [1, 0, 0, 1, 0]
S2 = [0, 1, 0, 0, 1]



critical section, semaphore, mutex

S0 = [1, 0, 1, 0, 1]
S1 = [1, 0, 0, 1, 0]
S2 = [0, 1, 0, 0, 1]

[*, 1, *, 1, *]
reachable in some path?



Infinite Capacity Petri net 



Infinite Capacity Petri net 

S0 = [0,  0]
S1 = [ω, 0]
S2 = [ω, ω]



Finite Capacity Petri net (FC P/T PN)



Finite Capacity Petri net (FC P/T PN)

S0 = [0, 0]
S1 = [1, 0]
S2 = [2, 0]
S3 = [0, 1]
S4 = [1, 1]
S5 = [2, 1]



Finite Capacity Petri net 
as augmented Infinite Capacity Petri net?



Finite Capacity Petri net 
as augmented Infinite Capacity Petri net



Finite Capacity Petri net 
as augmented Infinite Capacity Petri net

→ same “expressiveness” 
→ Finite Capacity is “syntactic sugar”

- x0(p)



P/T PN with Inhibitor Arc (makes Turing equiv.)



P/T PN with Inhibitor Arc (makes Turing equiv.)

S0 = [2, 0, 0]
S1 = [1, 0, 1]
S2 = [0, 0, 2]



P/T PN with Inhibitor Arc (finite capacity)



P/T PN with Inhibitor Arc (finite capacity)



(both in size and in marking ω)



modelling the “current state” of an FSA → single token

Finite State Automaton represented as a Petri Net

         [0c, 10c, 20c, 30c, 40c, 50c]

S0 = [1, 0, 0, 0, 0, 0]
S1 = [0, 0, 0, 0, 0, 1]
S2 = [0, 0, 1, 0, 0, 0]
S3 = [0, 1, 0, 0, 0, 0]
S4 = [0, 0, 0, 1, 0, 0]
S5 = [0, 0, 0, 0, 1, 0]





FSA without output



FSA without output



FSA without output



FSA without output



FSA with output (and communication)



FSA with output (and communication)



Fairness, Time  … TPPN, TTPN



Colour

http://cpntools.org/ 

http://cpntools.org/




Simple Server/Queue



Simple Server/Queue

S0 = [0, 1, 0]
S1 = [ω, 1, 0]
S2 = [ω, 0, 1]

[queue, idle, busy]



Simple Server/Queue
departure modelled explicitly



Simple Server/Queue
with server breakdown (and repair)



Simple Server/Queue
with server breakdown (and repair)







Single transmitter



Single transmitter



Single transmitter



Single transmitter



Single transmitter



Two independent transmitters



Two transmitters competing for a single communication channel



of properties of interest





Bounded vs. Unbounded 



Conservation (invariants)

Sum of busy and idle marking is constant across all sample paths



Conservation (invariants): weighted sum

2 x transmitting + 1 x idle + 1x commChannel = 2 







Deadlock in queueing system with rework

[queueFree, queue, rework] = [0, 1, 1] → deadlock



Deadlock in queueing system with rework

[queueFree, queue, rework] = [0, 1, 1] → deadlock



Deadlock in queueing system with rework

[queueFree, queue, rework] = [0, 1, 1] → deadlock



Deadlock resolved (avoided)



Deadlock resolved (avoided)





Liveness example



Liveness example

T0 is L1-live
T1 is dead
T2 is L3-live, not L4-live



Liveness example

T0 is L1-live
T1 is dead
T2 is L3-live, not L4-live

S0 = [1, 0]
S1 = [0, 1]









Example



Reachability Tree (Graph)



Reachability Tree (Graph)



Coverability Tree



Coverability Tree



Coverability Tree (Graph)



Reachability  Tree/Graph  vs.   Coverability Tree (Graph)

→ abstraction → 
(morphism)

infinite finite



Reachability  Tree/Graph  vs.   Coverability Tree (Graph)

analysis property: reachable [1, 0, 3, 0] 

→ abstraction → 
(morphism)





slides from Richard M. Murray @ EECI 2012

specifying and checking properties over all traces
2001WETFSP “specification and verification” 

properties



Marked Petri Net

P = {H, O2, H2O, P3, P4}
T = {t, T1, T2}
A = {(H2,t), (O2,t), (O2, T1), (t, H2O), (t, P3), (H2O, T2), (T2, P4)}
w((H2,t)) = 2, w((t, P3)) = 3, w((O2,t)) = w((O2, T1)) = w((t, H2O)) =  w((H2O, T2)) = w((T2, P4)) = 1
I(t) = {H, O2}, I(T1) = {O2}, I(T2) = {H2O}
O(t) = {P3, H2O}, O(T1) = {}, O(T2) = {P4}
x = [9, 1, 1, 0, 0]   corresponding to places [H, O2, H2O, P3, P4]



Reachability graph = 
compact notation of all possible “sample paths” (behaviour traces) =

{ S0 -T1-> S2 -T2-> S4, S0 -T2-> S1 -T1-> S4,
 S0 -T2-> S1 -t-> S5 -T2-> S6, S0 -t-> S3 -T2-> S5 -T2-> S6} 

S0 = [9, 1, 1, 0, 0]
S1 = [9, 1, 0, 0, 1]
S2 = [9, 0, 1, 0, 0]
S3 = [7, 0, 2, 3, 0]
S4 = [9, 0, 0, 0, 1]
S5 = [7, 0, 1, 3, 1]
S6 = [7, 0, 0, 3, 2]

Marked Petri Net semantics: behaviour traces



Linear Temporal Logic (LTL, Amir Pnueli in 1977): specifying properties over (behaviour) traces

(behaviour) trace



F
G

in the Fullness of time

Globally





Property: Process 1 and process 1 are never both in their critical sections at the same time (mutual exclusion) 

process 1 process 2



Property: Process 1 and process 1 are never both in their critical sections at the same time (mutual exclusion) 

process 1 process 2

forall paths (CTL) 



Property: Neither process monopolizes the critical section (fairness)

process 1 process 2



Computational Tree Logic (CTL)

non-deterministic behaviour 
leads to branches 
in the behaviour trace

forall paths 
(universal quantification)

there exists a path 
(existential quantification)



https://www.tapaal.net/ 

https://www.tapaal.net/


From “On Signal Temporal Logic” lecture by Alexandre Donzé. EECS114@UCB. 2013

Signal Temporal Logic (STL)



https://github.com/nickovic/rtamt

From “On Signal Temporal Logic” lecture by Alexandre Donzé. EECS114@UCB. 2013

Signal Temporal Logic (STL) for run-time monitoring of Hybrid Systems

Tools:

- breach (Matlab toolbox)

- RTAMT

https://github.com/decyphir/breach



automated and Simulation based functional safety Engineering meThodology (aSET)



DSL for contract specification

Matthias Bernaerts, Bentley J. Oakes, Ken Vanherpen, Bjorn Aelvoet, Hans Vangheluwe, and Joachim Denil.
Validating industrial requirements with a contract-based approach. 
Proceedings of the ACM/IEEE 22nd International Conference on Model Driven Engineering, Languages and Systems. 
Companion, pages 18 – 27. IEEE, September 2019.
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