
 Hans.Vangheluwe@uantwerpen.be

(Place/Transition) Petri Nets

mailto:Hans.Vangheluwe@uantwerpen.be

Example Petri Net

P = {H, O2, H2O, P3, P4}
T = {t, T1, T2}
A = {(H,t), (O2,t), (O2, T1), (t, H2O), (t, P3), (H2O, T2), (T2, P4)}
w((H,t)) = 2, w((t, P3)) = 3, w((O2,t)) = w((O2, T1)) = w((t, H2O)) = w((H2O, T2)) = w((T2, P4)) = 1
I(t) = {H, O2}, I(T1) = {O2}, I(T2) = {H2O}
O(t) = {P3, H2O}, O(T1) = {}, O(T2) = {P4}

Example Marked Petri Net

P = {H, O2, H2O, P3, P4}
T = {t, T1, T2}
A = {(H2,t), (O2,t), (O2, T1), (t, H2O), (t, P3), (H2O, T2), (T2, P4)}
w((H2,t)) = 2, w((t, P3)) = 3, w((O2,t)) = w((O2, T1)) = w((t, H2O)) = w((H2O, T2)) = w((T2, P4)) = 1
I(t) = {H, O2}, I(T1) = {O2}, I(T2) = {H2O}
O(t) = {P3, H2O}, O(T1) = {}, O(T2) = {P4}
x = [9, 1, 1, 0, 0] corresponding to places [H, O2, H2O, P3, P4]

Example Marked Petri Net
Enabled transitions in red

Example Marked Petri Net
Enabled transitions in red

Marking corresponds to [H, O2, H2O, P3, P4]

S0 = [9, 1, 1, 0, 0]
S1 = [9, 1, 0, 0, 1]
S2 = [9, 0, 1, 0, 0]
S3 = [7, 0, 2, 3, 0]
S4 = [9, 0, 0, 0, 1]
S5 = [7, 0, 1, 3, 1]
S6 = [7, 0, 0, 3, 2]

Example Marked Petri Net

Reachability graph =
compact notation of all possible “sample paths” (behaviour traces) =

{ S0 -T1-> S2 -T2-> S4, S0 -T2-> S1 -T1-> S4,
 S0 -T2-> S1 -t-> S5 -T2-> S6, S0 -t-> S3 -T2-> S5 -T2-> S6}

S0 = [9, 1, 1, 0, 0]
S1 = [9, 1, 0, 0, 1]
S2 = [9, 0, 1, 0, 0]
S3 = [7, 0, 2, 3, 0]
S4 = [9, 0, 0, 0, 1]
S5 = [7, 0, 1, 3, 1]
S6 = [7, 0, 0, 3, 2]

Example Marked Petri Net

Pattern: sequence

Pattern: sequence

Pattern: sequence

Pattern: sequence

Pattern: sequence

Pattern: sequence

Pattern: sequence

S0 = [2, 0, 0]
S1 = [1, 1, 0]
S2 = [1, 0, 1]
S3 = [0, 2, 0]
S4 = [0, 1, 1]
S5 = [0, 0, 2]

Pattern: split

Pattern: split

Pattern: split

Pattern: split

S0 = [1, 0, 0]
S1 = [0, 1, 1]

Pattern: join

Pattern: join

Pattern: join

Pattern: join

S0 = [1, 1, 0]
S1 = [0, 0, 1]

Pattern: conflict, choice, decision

Pattern: conflict, choice, decision

Pattern: conflict, choice, decision

S0 = [1, 0, 0]
S1 = [0, 0, 1]
S2 = [0, 1, 0]

Pattern: conflict, choice, decision

parallel indepencence, confluence

parallel indepencence, confluence

parallel indepencence, confluence

parallel indepencence, confluence

“parallel indepencence”
“confluence”
“diamond” pattern

S0 = [1, 0, 1, 0]
S1 = [0, 1, 1, 0]
S2 = [1, 0, 0, 1]
S3 = [0, 1, 0, 1]

critical section, semaphore, mutex

critical section, semaphore, mutex

critical section, semaphore, mutex

critical section, semaphore, mutex

critical section, semaphore, mutex

S0 = [1, 0, 1, 0, 1]
S1 = [1, 0, 0, 1, 0]
S2 = [0, 1, 0, 0, 1]

critical section, semaphore, mutex

S0 = [1, 0, 1, 0, 1]
S1 = [1, 0, 0, 1, 0]
S2 = [0, 1, 0, 0, 1]

[*, 1, *, 1, *]
reachable in some path?

Infinite Capacity Petri net

Infinite Capacity Petri net

S0 = [0, 0]
S1 = [ω, 0]
S2 = [ω, ω]

Finite Capacity Petri net (FC P/T PN)

Finite Capacity Petri net (FC P/T PN)

S0 = [0, 0]
S1 = [1, 0]
S2 = [2, 0]
S3 = [0, 1]
S4 = [1, 1]
S5 = [2, 1]

Finite Capacity Petri net
as augmented Infinite Capacity Petri net?

Finite Capacity Petri net
as augmented Infinite Capacity Petri net

Finite Capacity Petri net
as augmented Infinite Capacity Petri net

→ same “expressiveness”
→ Finite Capacity is “syntactic sugar”

- x0(p)

P/T PN with Inhibitor Arc (makes Turing equiv.)

P/T PN with Inhibitor Arc (makes Turing equiv.)

S0 = [2, 0, 0]
S1 = [1, 0, 1]
S2 = [0, 0, 2]

P/T PN with Inhibitor Arc (finite capacity)

P/T PN with Inhibitor Arc (finite capacity)

(both in size and in marking ω)

modelling the “current state” of an FSA → single token

Finite State Automaton represented as a Petri Net

 [0c, 10c, 20c, 30c, 40c, 50c]

S0 = [1, 0, 0, 0, 0, 0]
S1 = [0, 0, 0, 0, 0, 1]
S2 = [0, 0, 1, 0, 0, 0]
S3 = [0, 1, 0, 0, 0, 0]
S4 = [0, 0, 0, 1, 0, 0]
S5 = [0, 0, 0, 0, 1, 0]

FSA without output

FSA without output

FSA without output

FSA without output

FSA with output (and communication)

FSA with output (and communication)

Fairness, Time … TPPN, TTPN

Colour

http://cpntools.org/

http://cpntools.org/

Simple Server/Queue

Simple Server/Queue

S0 = [0, 1, 0]
S1 = [ω, 1, 0]
S2 = [ω, 0, 1]

[queue, idle, busy]

Simple Server/Queue
departure modelled explicitly

Simple Server/Queue
with server breakdown (and repair)

Simple Server/Queue
with server breakdown (and repair)

Single transmitter

Single transmitter

Single transmitter

Single transmitter

Single transmitter

Two independent transmitters

Two transmitters competing for a single communication channel

of properties of interest

Bounded vs. Unbounded

Conservation (invariants)

Sum of busy and idle marking is constant across all sample paths

Conservation (invariants): weighted sum

2 x transmitting + 1 x idle + 1x commChannel = 2

Deadlock in queueing system with rework

[queueFree, queue, rework] = [0, 1, 1] → deadlock

Deadlock in queueing system with rework

[queueFree, queue, rework] = [0, 1, 1] → deadlock

Deadlock in queueing system with rework

[queueFree, queue, rework] = [0, 1, 1] → deadlock

Deadlock resolved (avoided)

Deadlock resolved (avoided)

Liveness example

Liveness example

T0 is L1-live
T1 is dead
T2 is L3-live, not L4-live

Liveness example

T0 is L1-live
T1 is dead
T2 is L3-live, not L4-live

S0 = [1, 0]
S1 = [0, 1]

Example

Reachability Tree (Graph)

Reachability Tree (Graph)

Coverability Tree

Coverability Tree

Coverability Tree (Graph)

Reachability Tree/Graph vs. Coverability Tree (Graph)

→ abstraction →
(morphism)

infinite finite

Reachability Tree/Graph vs. Coverability Tree (Graph)

analysis property: reachable [1, 0, 3, 0]

→ abstraction →
(morphism)

slides from Richard M. Murray @ EECI 2012

specifying and checking properties over all traces
2001WETFSP “specification and verification”

properties

Marked Petri Net

P = {H, O2, H2O, P3, P4}
T = {t, T1, T2}
A = {(H2,t), (O2,t), (O2, T1), (t, H2O), (t, P3), (H2O, T2), (T2, P4)}
w((H2,t)) = 2, w((t, P3)) = 3, w((O2,t)) = w((O2, T1)) = w((t, H2O)) = w((H2O, T2)) = w((T2, P4)) = 1
I(t) = {H, O2}, I(T1) = {O2}, I(T2) = {H2O}
O(t) = {P3, H2O}, O(T1) = {}, O(T2) = {P4}
x = [9, 1, 1, 0, 0] corresponding to places [H, O2, H2O, P3, P4]

Reachability graph =
compact notation of all possible “sample paths” (behaviour traces) =

{ S0 -T1-> S2 -T2-> S4, S0 -T2-> S1 -T1-> S4,
 S0 -T2-> S1 -t-> S5 -T2-> S6, S0 -t-> S3 -T2-> S5 -T2-> S6}

S0 = [9, 1, 1, 0, 0]
S1 = [9, 1, 0, 0, 1]
S2 = [9, 0, 1, 0, 0]
S3 = [7, 0, 2, 3, 0]
S4 = [9, 0, 0, 0, 1]
S5 = [7, 0, 1, 3, 1]
S6 = [7, 0, 0, 3, 2]

Marked Petri Net semantics: behaviour traces

Linear Temporal Logic (LTL, Amir Pnueli in 1977): specifying properties over (behaviour) traces

(behaviour) trace

F
G

in the Fullness of time

Globally

Property: Process 1 and process 1 are never both in their critical sections at the same time (mutual exclusion)

process 1 process 2

Property: Process 1 and process 1 are never both in their critical sections at the same time (mutual exclusion)

process 1 process 2

forall paths (CTL)

Property: Neither process monopolizes the critical section (fairness)

process 1 process 2

Computational Tree Logic (CTL)

non-deterministic behaviour
leads to branches
in the behaviour trace

forall paths
(universal quantification)

there exists a path
(existential quantification)

https://www.tapaal.net/

https://www.tapaal.net/

From “On Signal Temporal Logic” lecture by Alexandre Donzé. EECS114@UCB. 2013

Signal Temporal Logic (STL)

https://github.com/nickovic/rtamt

From “On Signal Temporal Logic” lecture by Alexandre Donzé. EECS114@UCB. 2013

Signal Temporal Logic (STL) for run-time monitoring of Hybrid Systems

Tools:

- breach (Matlab toolbox)

- RTAMT

https://github.com/decyphir/breach

automated and Simulation based functional safety Engineering meThodology (aSET)

DSL for contract specification

Matthias Bernaerts, Bentley J. Oakes, Ken Vanherpen, Bjorn Aelvoet, Hans Vangheluwe, and Joachim Denil.
Validating industrial requirements with a contract-based approach.
Proceedings of the ACM/IEEE 22nd International Conference on Model Driven Engineering, Languages and Systems.
Companion, pages 18 – 27. IEEE, September 2019.

	Slide 1
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 141
	Slide 142
	Slide 143
	Slide 145
	Slide 146
	Slide 149
	Slide 150
	Slide 151
	Slide 152

