
Strongly Connected Components

If a CBD model’s dependency graph contains dependency cycles, these need to be identified and replaced by an implicit
solution (analytical or numerical). Note how often, a small Delay (or Integrator) is inserted to “break the loop” and hence
avoid implicit solving. Finding dependency cycles is also known as locating strongly connected components in a graph.
A strongly connected component is a set of nodes in a graph whereby each node is reachable from each other node in the
strongly connected component.

# Produce a list of strong components.
# Strong components are given as lists of nodes.
# If a node is not in a cycle, it will be in a strong
# component with only itself as a member.

def strongComp(graph):

# Do a topological ordering of nodes in the graph
topSort(graph)

# note how the ordering information is not lost
# in subsequent processing and will be used during
# Time Slicing simulation.

# Produce a new graph with all edges reversed.
rev_graph = reverse_edges(graph)

# Start with an empty list of strong components
strong_components = []

# Mark all nodes as not visited
# setting the stage for some form of dfs of rev_graph
for node in rev_graph:

node.visited = FALSE

# As strong components are discovered and added to the
# strong_components list, they will be removed from rev_graph.
# The algorithm terminates when rev_graph is reduced to empty.
while rev_graph != empty:

# Start from the highest numbered node in rev_graph
# (the numbering is due to the "forward" topological sort
# on graph
start_node = highest_orderNumber(rev_graph)

# Do a depth first search on rev_graph starting from
# start_node, collecting all nodes visited.
# This collection (a list) will be a strong component.
# The dfsCollect() is very similar to strongComp().
# It also marks nodes as visited to avoid infinite loops.
# Unlike strongComp(), it only collects nodes and does not number
# them.

1



component = dfsCollect(start_node, rev_graph)

# Add the found strong component to the list of strong components.
strong_components.append(component)

# Remove the identified strong component (which may, in the limit,
# consist of a single node).
rev_graph.remove(component)

2


