Topological Sort

topSort () and dfsLabelling() both refer

to global counter dfsCounter which will be
incremented during the topological sort.

It will be used to assign an orderNumber to
each node in the graph.

dfsCounter =1

e

topSort () performs a topological sort on
a directed, possibly cyclic graph.

def topSort (graph):

Mark all nodes in the graph as un-visited
for node in graph:
node.visited = FALSE

Some topSort algorithms start from a "root" node
(defined as a node with in-degree = 0).
As we need to use topSort() on cyclic graphs (in our strongComp
algorithm), there may not exist such a "root" node.
We will keep starting a dfsLabelling() from any node in
the graph until all nodes have been visited.
for node in graph:
if not node.visited:
dfsLabelling (node)

= S S e S e

dfsLabelling() does a depth-first traversal of a possibly
cyclic directed graph. By marking nodes visited upon first
encounter, we avoid infinite looping.

def dfsLabelling(node, graph):
if the node has already been visited, the recursion stops here
if not node.visited:

avoid infinite loops
node.visited = TRUE

visit all neigbours first (depth first)
for neigbour in node.out_neigbours:
dfsLabelling (neighbour, graph)

label the node with the counter and
subsequently increment it
node.orderNumber = dfsCounter
dfsCounter +=1

