
System specification

Hans Vangheluwe

When studying existing systems, observations (of structure and behaviour) are the only tangible artifacts
we have at our disposal [Kli85]. A modeller may, based on observations and/or insight, build progressively
more complex models of a system. Here, we present a hierarchy of abstract model structures. Each structure
elaborates on the previous one, introducing (and representing) more detailed knowledge about the system.
The reverse operation, going from a model containing more information to a less detailed one, must be
shown to be possible. This, as some questions about the behaviour and structure of the system are better
answered at lower levels in the hierarchy. In particular, explicit behaviour in the form of input and output
trajectories, described at the lowest level, is often required.

In object-oriented terminology, a simulation model consists of model objects (often used to represent real-
world objects, entities, or concepts) as well as relationships among those objects. In general, a model object
is anything that can be characterized by one or more attributes to which values are assigned. Attributes
are either called indicative if they describe an aspect inherent to the object or relational if they relate the
object to one or more other objects. The values assigned to attributes have a type in the programming
language sense (i.e., , a set of allowed values they must belong to).

Mathematical sets and operations defined on those sets are the starting point for abstract system rep-
resentation or modelling. Simple finite sets of numbers {1, 2, . . . , 9}, identifiers {a, b, . . . , z}, as well as
infinite sets such as N,N+,R, and R

+ are typically used. Often, specific meaning is given to sets and their
members. The set EV for example is a finite set denoting arrival and departure events in a queueing
system

EV = {ARRIV AL,DEPARTURE}.

As in the discrete event abstraction, discussed later in greater detail, only a finite number of events are
assumed to occur in a bounded time interval, the non-event symbol φ is introduced to denote the absence
of events changing the state of the system. The event set is subsequently enriched with φ

EV φ = EV ∪ {φ}.

This demonstrates the use of basic set operations such as ∪. To describe multiple attributes of a system,
the set product × is used

A×B = {(a, b)|a ∈ A, b ∈ B}.

1 Time base and Segments

Every simulation model must have an indexing attribute which, at some level of abstraction will enable
state transitions [Nan81]. Time is the most common indexing attribute. Time is special in that it inexorably
progresses: the current state and behaviour of a system can only modify its future, never its past. This
concept is often called causality: a cause must always occur before a consequence. In a simulation context,
the indexing attribute is referred to as system time. Any set T can serve as a formalisation of time. A

1 Time base and Segments 2

t1 t2

t3

t4 t5

t6 t7

Figure 1: Partially ordered time base

nominal relationship = may be added to T to denote equality. To obtain a usable time base however, an
order relation on the elements of T is needed:

TimeBase = 〈T,<〉

This relation has properties

• transitive: A < B ∧B < C ⇒ A < C,

• irreflexive: A 6< A,

• antisymmetric: A < B ⇒ B 6< A.

This formalises the notion of order in time. The ordering relationship may be total (linear): each element
of T can be related to every other element. A partial ordering where not all elements of T can be compared
is useful in modelling uncertainty or concurrency. In Figure 1 for example, the nodes denote time instants
and the edges denote “precedes in time” (<). t2 precedes both t3 and t4 in time, but no information is
available about the relative position in time of t3 and t4. In case of concurrent behaviour, causality must
not be violated within the individual concurrent threads, but the time-ordering between concurrent events
may be left unspecified [Mil93]. Mathematically, partial ordering leads to a lattice structure.

For total ordering, it must be possible to compare any two elements of T :

∀t, t′ ∈ T : t < t′ ∨ t′ < t ∨ t = t′.

In case of total ordering, intervals may be defined. With intervals, the past Tt[and future T]t of an instant
t ∈ T may be defined

Tt[= {τ |τ ∈ T, τ < t},

T]t = {τ |τ ∈ T, t < τ}.

Once intervals have been defined,
T〈tb,te〉

denotes a time interval, where 〈t means]t or [t. In many cases, (T,+) is an Abelian group with zero 0
and inverse −t. In case + is order preserving

t1 < t2 ⇒ t1 + t < t2 + t.

Common time bases (with appropriate < and +) are

• T = {NOW}. Models such as algebraic models are instantaneous. The time base is a singleton.
• T = R. Models with this time base are called continuous-time models. Note how discrete event
models have R as a time base. However, only at a finite number of time-instants in a bounded
time-interval, an event different from the non-event φ occurs.

1.1 Behaviour 3

TD

TC

(tc, td)

Figure 2: Time base for hybrid system models

• T = N (or isomorphic). Models with this time base are called discrete-time models. Some formalisms
such as Finite State Automata (FSA) do not have an explicit notion of time (unlike their extension,
timed automata). Hence, they are often called untimed models. There is however a notion of pro-
gression (from one state to another). According to our general definition, the index of progression,
a natural number, is time.

In hybrid system models which combine aspects of continuous and discrete models [MB02], a system
evolves continuously over time (R) until a certain condition is met. Then, instantaneously (the continuous
time does not progress), the system may go through a number of discrete states (the index of progression
is discrete) before continuing its continuous behaviour. To uniquely describe progression (of generalized
time) in this case, a tuple (tc, td) depicted in Figure 2 is needed. Even when a series of discrete transitions
keeps returning to the same state, the discrete index tc allows one to distinguish between them. The time
base used is

T = {(tc, td)|tc ∈ R, td ∈ {1, . . . , N(tc)}}.

Here, N(tc) (≥ 1) describes the number of discrete transitions the system goes through at continuous time
tc. Obviously, only a partial ordering will be defined over T which consists of first testing the relationship
between the tc components, and subsequently (if equal), that between the td components.

In case of Partial Differential Equations (PDEs), the time base remains R. The other independent variables
(often space in the form of some coordinate system) should be seen as infinitely many state-variable labels
or generalized coordinates.

1.1 Behaviour

Given a time base, we wish to formalize behaviour over time. This is done by means of a time function,
called trajectory or signal

f : T → A

describing, at each time t, the value of the signal. A denotes the set of valid values f can take over T . The
time base may be restricted to a subset of T : T ′ ⊆ T . The restriction of f to T ′ is

f |T ′ : T ′ → A,

∀t ∈ T ′ : f |T ′(t) = f(t).

1.1 Behaviour 4

T

T

T

T

continuous

piecewise continuous

piecewise constant

discrete event

V

V

V

V

Figure 3: Segment types

The past of f is defined as f |Tt〉. The future of f is defined as f |T〈t.

The restriction of f to an interval is called a segment ω

ω : 〈t1, t2〉 → A.

The set of all allowed segments is called Ω. It is a subset of all possible segments (A, T). The length of a
segment:

l : Ω → T+
0

ω → tf − ti, dom(ω) = 〈tb, te〉

Segments are contiguous if their domains 〈t1, t2〉 and 〈t3, t4〉 are contiguous: t2 = t3.

Contiguous segments may be concatenated – ω1 • ω2:

ω1 • ω2(t) = ω1(t), ∀t ∈ dom(ω1);

ω1 • ω2(t) = ω2(t), ∀t ∈ dom(ω2),

where 〈 and 〉 must denote matching open/closed interval boundaries to ensure the concatenated segment
is still a function (i.e., has a unique value in each point of its domain).

A desirable property of a set of segments Ω is that it is closed under concatenation •: concatenating any
left and right segment of a segment yields the same segment:

∀t ∈ dom(ω) : ωt〉 • ω〈t = ω.

Figure 3 shows some common segment types: continuous, piecewise continuous, piecewise constant and
discrete event. Note how for discrete event systems, inputs and output segments are event segments

2 Levels of system specification 5

ω : 〈t1, t2〉 → A ∪ {φ},

with φ the non-event. For such systems, the internal state behaviour is piecewise constant (the internal
state only changes at event times).

2 Levels of system specification

With a time base and segments defined, we can build a hierarchy of system specification structures which
incorporate progressively more knowledge about the system. All these structures will view the system as a
box interacting with its environment through a well defined interface. The levels presented here elaborate
on the hierarchy first proposed by Klir [Kli85] and later modified by Zeigler [ZPK00].

2.1 Observation Frame

At the lowest level, the only knowledge we have of the behaviour of a system is how we wish to observe it:
which time base to use and which quantities to observe at instants from the time base. This is represented
in the form of an Observation Frame O:

O ≡ 〈T,X, Y 〉.

T with appropriate operators forms a time base. X is the input value set. It is a model for the input
(influencing the behaviour of the system) variables we consider. Y is the output value set. It is a model
for the system response variables.

2.2 I/O Relation Observation

Once the interface variables to observe as well as their value ranges have been determined, all possible
relationships between input and output segments can be recorded

IORO ≡ 〈T,X,Ω, Y, R〉.

Here, 〈T,X, Y 〉 is an Observation Frame, and Ω is the set of all possible input segments for this system.
Note how Ω allows one to specify how the system’s environment may influence the system. As such,
Ω formalizes the Experimental Frame’s generator presented before. Ω is a subset of all mathematically
possible segments with T as domain and X as image. R is the I/O relation

R ⊆ Ω× (Y, T),

where Ω ⊆ (X,T), all possible segments with T as domain and X as image. (Y, T) stands for all possible
segments with T as domain and Y as image. Input segments ω and output segments ρ are defined as

ω : 〈ti, tf 〉 → X;

ρ : 〈ti, tf 〉 → Y.

Though not necessary, it is common to observe input and output segments over the same time domain.
The relation R relates input and output segments

(ω, ρ) ∈ R ⇒ dom(ω) = dom(ρ).

As will be discussed further on, general non-causal relationships between interface variables, not specifying
a priori which are input and which are output may be specified by R. Higher levels in the specification
hierarchy are explicitly causal.

2.2.1 From I/O Relation Observation to Observation Frame

It is possible to go from an I/O Relation Observation model specification to an Observation Frame level
model by merely discarding the Ω and R information at the I/O Relation Observation level.

2.3 I/O Function Observation 6

2.3 I/O Function Observation

At the I/O Relation Observation level, an input segment ω is not necessarily associated with a unique
output segment ρ. This is due to a limited knowledge of the internal working of the system. At the I/O
Function Observation level, we want to associate a unique output segment with every input segment.
Therefore, more information needs to be specified about the system. This is done in the form of a set F
of I/O functions f . This leads to the I/O Function Observation structure

IOFO ≡ 〈T,X,Ω, Y, F 〉,

where 〈T,X, Y 〉 is I/O Relation Observation, Ω is the set of all possible input segments, F is the set of
I/O functions:

f ∈ F ⇒ f ⊂ Ω× (Y, T);

dom(f(ω)) = dom(ω).

f is conceptually equivalent to the system’s initial state: For each f , an input segment will be transformed
into a unique output segment.

2.3.1 From I/O Function Observation to I/O Relation Observation

It is possible to go from an I/O Function Observation to an I/O Relation Observation by constructing R

from F :
R =

⋃

f∈F

f.

2.4 I/O System

In some cases, we have some insight into the internal working of the system. This insight usually consists
of a number of descriptive variables and how their values evolve over time. Under certain conditions, these
variables are state variables. One usually tries to keep the set of state variables as small as possible.

In general systems theory [Wym67], a causal (output is the consequence of given inputs), deterministic (a
known input will lead to a unique output) system model SY S is defined. It is a template for a plethora of
different formalism such as Ordinary Differential Equations, Finite State Automata, Difference Equations,
Petri Nets, etc. Its general form is

SY S ≡ 〈T,X,Ω, Q, δ, Y, λ〉

T time base
X input set
Ω = {ω : T → X} input segment set
Q state set
δ : Ω×Q → Q transition function
Y output set
λ : Q → Y (or Q×X → Y) output function

∀ω, ω′ ∈ Ω, δ(ω • ω′, qi) = δ(ω′, δ(ω, qi)).

The time base T is the formalisation of the independent variable time. The input set X describes all
possible allowed input values (possibly a product set). An input segment ω represents input during a time-
interval. The history of system behaviour is condensed into a state (from a state set Q). The dynamics
is described in a transition function δ which takes a current state, and applies an input segment ω ∈ Ω
to it to obtain a new state. The system may generate output. This output is obtained as a function λ

2.4 I/O System 7

t_ft_xt_i

Q

X

T

T

ω[t_x, t_f]ω[t_i, t_x] ω[t_i, t_f]

δ(t_x -> t_f)δ(t_i -> t_x)

δ(t_i -> t_f)

Figure 4: SYS state transition property

of the state (and more generally, of the current input too). State and transition function must obey the
composition or semigroup property as shown in Figure 4. This property, whereby a transition over a time
interval [ti, tf] can always be split into a composition of transitions over arbitrary sub-intervals, is the
basis of all model simulators. Obviously, this also requires Ω to be closed under concatenation as well
as left segmentation. Closure under concatenation requires that the concatenation of any two contiguous
segments in Ω is again in Ω. Left segmentation requires that any left segment of a segment in Ω is an
element of Ω in its own right.

As the output function is described separately, efficient simulators will only invoke this function (which
may be large and compute-intensive) when the user needs to observe output. Note how the output intervals
(times between outputs) are not part of the model, but rather of the simulation experiment. Figure 5 shows
how output need not be produced at each transition time. Even though a model written by a user may not
distinguish between δ and λ, a simple dependency analysis will identify which variables and expressions
are not needed to compute δ. Such variables are output variables ∈ Y and the expressions belong in λ.

As SY S is a template for a host of causal, deterministic formalisms, it is possible to describe both models
of the vessel example presented earlier. In the Ordinary Differential Equation (ODE) case, the time base
is continuous (R). The transition function is written in integral form. Different numerical approximations
of the integral can be used in the implementation of an abstract simulator.

2.4.1 From I/O System specification to I/O Function Observation

It is possible to go from an I/O System specification to an I/O Function Observation. For a given initial
condition q and a given input segment ω, we can define a state trajectory STRAJq,ω from SY S

STRAJq,ω : dom(ω) → Q,

with
STRAJq,ω(t) = δ(ωt〉, ∀t ∈ dom(ω).

From this state trajectory, an output trajectory OTRAJq,ω may be constructed

OTRAJq,ω : dom(ω) → Y,

2.4 I/O System 8

λ

δ

X

Q

Y

ti

ω

tf

λ

δ

ω

δ

ω

T

Figure 5: Simulation kernel operation

with
OTRAJq,ω(t) = λ(STRAJq,ω(t), ω(t)), ∀t ∈ dom(ω).

Thus, for every q (initial state), it is possible to construct

Tq : Ω → (Y, T),

where
Tq(ω) = OTRAJq,ω, ∀ω ∈ Ω.

The I/O Function Observation associated with SY S is then

IOFO = 〈T,X,Ω, Y, {Tq(ω)|q ∈ Q}〉.

Subsequently, we may derive the I/O Relation Observation by constructing the relation R as the union
of all I/O functions:

R = {(ω, ρ)|ω ∈ Ω, ρ = OTRAJq,ω, q ∈ Q}.

In SY S, δ is deterministic: applying the same input segment to the same state will always lead to the
same, unique new state (and output). Often, deterministic simulation kernels are used to simulate non-
deterministic models. Two main approaches are possible:

1. A deterministic model is decorated with transition probabilities as shown in Figure 6. The same
model is then simulated a number of times, with the same initial conditions and parameters. When-
ever a non-deterministic transition is encountered however, a unique, deterministic, transition is
chosen by sampling from a stochastic distribution, taking into account the transition probabilities
in the model. Thus, from the point of view of the simulation engine, it is simulating a deterministic
model. To be able to make meaningful statements about the behaviour of the non-deterministic
model, a sufficient number of samples must be simulated to obtain statistically relevant estimates
of performance metrics (such as average queue lengths in a queueing model). In discrete event sim-
ulation in particular, this approach is common and its statistical aspects have been studied in great
detail [LK91]. In a slightly modified form, this approach is called Monte Carlo simulation.

2.4 I/O System 9

red

green
event (P = 0.4)

event (P = 0.6)
yellow

Figure 6: Non-deterministic model with transition probabilities

2. One may wish not to specify any probability distribution but leave the uncertainty of making a
transition to more than one new state in the transition function. In case of State Automata, this
turns the transition graph into a transition hypergraph [Har88]. Such a specification can always be
transformed into a deterministic one by constructing a new state set Qnew = 2Q, the set of all subsets
(powerset) of Q [Cas93]. A new transition function is constructed describing the –now deterministic–
transition to a new state, denoting the set of states from Q to which a non-deterministic transition
existed in the old model. It is noted that in quantum physics, evolution over time of a wave function
(a distribution interpreted as being probabilistic) is also deterministic.

Zeigler [ZPK00] presents a refinement of SY S in which behaviour is specified as an iterative application
of generator segments. Arbitrary input segments are generated from elementary segments.

It should be noted that though models may be iteratively simulated, this is not necessary per se. If a
symbolic (analytical) solution can be found, this is often preferable. Analytical solutions usually describe
a (parametrised) class of solutions rather than a single one. Also, accumulation of numerical errors is
often avoided. As an example, the following model described in the Difference Equation formalisms (T =
N, Q = R)

{

x1 = 1
xi+1 = axi + 1, i > 1

can be re-written as
{

xn = 1 + a+ a2 + . . .+ an−1

axn = a+ a2 + . . .+ an−1 + an,

subtracting the second from the first equation leads to the instantaneous (no iteration required) solution

xn =
1− an

1− a
.

REFERENCES 10

References

[Cas93] Christos G. Cassandras. Discrete Event Systems. Irwin, 1993.

[Har88] David Harel. On visual formalisms. Communications of the ACM, 31(5):514–530, May 1988.

[Kli85] George J. Klir. Architecture of Systems Problem Solving. Plenum Press, 1985.

[LK91] Averill M. Law and David W. Kelton. Simulation Modeling and Analysis. McGraw-Hill, 1991.

[MB02] Pieter J. Mosterman and Gautam Biswas. A modeling and simulation methodology for hybrid
dynamic physical systems. Transactions of the Society for Computer Simulation International,
2002.

[Mil93] Robin Milner. Elements of interaction. Communications of the ACM, 36(1):70–89, January
1993. Turing Award Lecture.

[Nan81] Richard E. Nance. The time and state relationships in simulation modeling. Communications
of the ACM, 24(4):173–179, April 1981.

[Wym67] A. Wayne Wymore. A Mathematical Theory of Systems Engineering – the Elements. Wiley
Series on Systems Engineering and Analysis. Wiley, 1967.

[ZPK00] Bernard P. Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of Modelling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic Press, second
edition, 2000.

	Time base and Segments
	Behaviour

	Levels of system specification
	Observation Frame
	I/O Relation Observation
	From I/O Relation Observation to Observation Frame

	I/O Function Observation
	From I/O Function Observation to I/O Relation Observation

	I/O System
	From I/O System specification to I/O Function Observation

