
Developing Reactive Systems 
using Statecharts

Simon Van Mierlo
University of Antwerp

Belgium
simon.vanmierlo@uantwerpen.be

Hans Vangheluwe
University of Antwerp

Belgium
hans.vangheluwe@uantwerpen.be

Modelling of Software-Intensive Systems

Axel Terfloth
itemis AG
Germany

terfloth@itemis.de



 2

Introduction



 3

Reactive Systems



 4

Reactive Systems



 5

Reactive Systems



 6

Reactive Systems



 7
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• Complexity: reactive (to events), timed, concurrent, behaviour
• In contrast to transformational systems, which take input and, 

eventually, produce output

Reactive Systems



 9

Modelling Reactive Systems



 10

• Interaction with the environment: reactive to 
events

Modelling Reactive Systems



 11

• Interaction with the environment: reactive to 
events
• Autonomous behaviour: timeouts + 

spontaneous transitions

Modelling Reactive Systems



 12

• Interaction with the environment: reactive to 
events
• Autonomous behaviour: timeouts + 

spontaneous transitions
• System behaviour: modes (hierarchical) + 

concurrent units

Modelling Reactive Systems



 13

• Interaction with the environment: reactive to 
events
• Autonomous behaviour: timeouts + 

spontaneous transitions
• System behaviour: modes (hierarchical) + 

concurrent units
• Use programming language + threads and 

timeouts (OS)?

Modelling Reactive Systems



 14
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E. A. Lee, "The problem with threads," in Computer, vol. 39, no. 5, pp. 33-42, May 2006.

“Nontrivial software written with threads, semaphores, and 
mutexes are incomprehensible to humans”
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• Interaction with the environment: reactive to 
events
• Autonomous behaviour: timeouts + 

spontaneous transitions
• System behaviour: modes (hierarchical) + 

concurrent units
• Use programming language + threads and 

timeouts (OS)?

Modelling Reactive Systems

E. A. Lee, "The problem with threads," in Computer, vol. 39, no. 5, pp. 33-42, May 2006.

“Nontrivial software written with threads, semaphores, and 
mutexes are incomprehensible to humans”

Programming language (and OS) is too low-level

   -> most appropriate formalism: “what” vs. “how”
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• All states are explicitly represented (unlike Petrinets, for example)

• Flat representation (no hierarchy)

• Does not scale well: becomes too large too quickly to be usable (by  
humans)

State Diagrams
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event/
state s0 s1 s2 s3 s4 s5 s6

5 s1, n s2, n s3, n s4, n s5, n s6, n s6, 5

10 s2, n s3, n s4, n s5, n s6, n s6, 5 s6, 10

25 s5, n s6, n s6, 5 s6, 10 S6, 15 s6, 20 s6, 25

O s0, n s1, n s2, n s3, n s4, n s5, n s0, orange 
juice

R s0, n s1, n s2, n s3, n s4, n s5, n s0, apple 
juice

Alternative Representation: Parnas Tables

https://cs.uwaterloo.ca/~jmatlee/Talks/Parnas01.pdf

https://cs.uwaterloo.ca/~jmatlee/Talks/Parnas01.pdf
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Moore Machines
• Output only depends on current 

state. 
: Q   Oλ →

• Input stream: 00   →
Output stream: 111

Mealy and Moore Machines

https://www.geeksforgeeks.org/mealy-and-moore-machines/

Mealy Machines
• Output depends on current state 

and on current input. 
: Q x λ ∑   O→

• Input stream: 00   →
Output stream: 11

 FSA: (Q, q0, ∑, O,  ,  ) δ λ

https://www.geeksforgeeks.org/mealy-and-moore-machines/


 28

• Can be made Turing-complete
 → data memory, control flow, branching

• Extend FSAs
 → borrow semantics from Mealy and Moore machines

FSAs: Expressiveness

https://en.wikipedia.org/wiki/Finite-state_machine

https://en.wikipedia.org/wiki/Finite-state_machine


 29

Higraphs

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.
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Euler Diagrams

topological notions for set union, difference, intersection
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Higraphs

Euler Diagrams

topological notions for set union, difference, intersection

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.

X = {a, b, …, h}

a

b
c

d
e

fg

h

Hypergraphs

topological notion (syntax): connectedness 

Hyperedges:  2⊆ X (undirected),  2⊆ X ×2X (directed). 
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Higraphs

Euler Diagrams

topological notions for set union, difference, intersection

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.

X = {a, b, …, h}

a

b
c

d
e

fg

h

Unordered Cartesian Product

Hypergraphs

A = B  C⊗

A
B C

topological notion (syntax): connectedness 

Hyperedges:  2⊆ X (undirected),  2⊆ X ×2X (directed). 
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Higraphs

Euler Diagrams

Hypergraphs

Unordered Cartesian Product

+

+

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.
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• Clique

Higraph: Examples
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• Clique

Higraph: Examples



 36

• ER-Diagrams

Higraphs: Examples
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• ER-Diagrams

Higraphs: Examples
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• A higraph H is a quadruple

H = (B, E, σ,π)
• B is a finite set of all unique blobs
• E is a set of hyperedges

 ⊆ 2B x 2B

• The subblob function σ

 σ: B  2→ B

  σ0(x) = {x},                     ,   

Higraphs: Formal Definition
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• Subblobs relation cycle-free

x  ∉ σ+(x)
• The partitioning function π associates an equivalence 

relationship with x

π : B  2→ B×B

• Equivalence classes πi are orthogonal components of x 
π1(x), π2(x), ..., πkx(x)

• kx = 1 means a single orthogonal component

• Blobs in different orthogonal components of x are 
disjoint

∀y,z  (x) : ∈ σ σ+(y)∩σ+(z) = ∅

Higraphs: Formal Definition
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• Apply syntactic constructs to an existing modelling 
language.

• Add specific meaning to these constructs.

• Examples:
• E-R diagrams
• Dataflow/Activity Diagrams
• Inheritance
• Statecharts

Higraphs Applications
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Statecharts
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• Visual (topological, not geometric) formalism
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• Visual (topological, not geometric) formalism
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• Documentation (for human communication)
• Analysis (of behavioural properties)
• Simulation
• Code synthesis
• … and derived, such as testing, optimization, …

Statecharts
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• Many uses:
• Documentation (for human communication)
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• Simulation
• Code synthesis
• … and derived, such as testing, optimization, …

Statecharts
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• Introduced by David Harel in 1987

Statecharts History

David Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming, Volume 8, Issue 3, 1987, pages 231-274
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• Introduced by David Harel in 1987
• Notation based on higraphs = hypergraphs + Euler 

diagrams + unordered Cartesian product

Statecharts History

David Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming, Volume 8, Issue 3, 1987, pages 231-274
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• Introduced by David Harel in 1987
• Notation based on higraphs = hypergraphs + Euler 

diagrams + unordered Cartesian product

• Semantics extends deterministic finite state automata 
with:
• Depth (Hierarchy)
• Orthogonality
• Broadcast Communication
• Time
• History
• Syntactic sugar, such as enter/exit actions

Statecharts History

David Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming, Volume 8, Issue 3, 1987, pages 231-274
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• Incorporated in UML: State Machines (1995)
• More recent: xUML for semantics of UML subset 

(2002)

• W3 Recommendation: State Chart XML (SCXML) 
(2015)
          https://www.w3.org/TR/scxml/

• Standard: Precise Semantics for State Machines 
(2019)

https://www.omg.org/spec/PSSM/

Statecharts History

https://www.omg.org/spec/PSSM/


 51

Statechart (Variants) Tools

https://ptolemy.berkeley.edu/ptolemyII/ptII11.0/index.ht
m

https://www.eclipse.org/papyrus-rt/

https://www.itemis.com/en/yakindu/state-machine/

https://www.ibm.com/us-en/marketplace/systems-design-rhapsody

https://www.mathworks.com/products/stateflow.html

https://www.eclipse.org/etrice/

https://ptolemy.berkeley.edu/ptolemyII/ptII11.0/index.htm
https://ptolemy.berkeley.edu/ptolemyII/ptII11.0/index.htm
https://www.eclipse.org/papyrus-rt/
https://www.itemis.com/en/yakindu/state-machine/
https://www.ibm.com/us-en/marketplace/systems-design-rhapsody
https://www.mathworks.com/products/stateflow.html
https://www.eclipse.org/etrice/
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Running Example

(Physical) Plant
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What are we developing?

• Turn on/off traffic lights (red/green/yellow)
• Display counter value (three-digit)
• Change counter colour (red/green)
• Sense button presses

• Autonomous (timed) behaviour
• Interrupt logic
• Orthogonal (traffic light/timer) behaviour

(Physical) Plant

Environment

Controller <<sense>>
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plant
input
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What are we developing?

• Turn on/off traffic lights (red/green/yellow)
• Display counter value (three-digit)
• Change counter colour (red/green)
• Sense button presses

• Autonomous (timed) behaviour
• Interrupt logic
• Orthogonal (traffic light/timer) behaviour

(Deployed) Statecharts
Model

(Physical) Plant

Environment

Controller <<sense>>

<<act>>

<<sense>>

System

plant
input

plant
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What are we developing?

• Turn on/off traffic lights (red/green/yellow)
• Display counter value (three-digit)
• Change counter colour (red/green)
• Sense button presses

• Autonomous (timed) behaviour
• Interrupt logic
• Orthogonal (traffic light/timer) behaviour

(Deployed) Statecharts
Model

“Interface”

(Physical) Plant

Environment

Controller <<sense>>

<<act>>

<<sense>>

System

plant
input

plant
output
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Deployment (Simulation)
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Deployment (Simulation)

Environment

Controller

plant
input

plant
output

<<sense>>

<<act>>

(Simulated) Plant

1 2

<<sense>>

System



 67

Deployment (Simulation)

Controller

plant
input

plant
output

<<sense>>

<<act>>

(Simulated) Plant

1 2

Environment
System



 68
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Workflow

Hans Vangheluwe and Ghislain C. Vansteenkiste. A multi-paradigm modeling and simulation methodology: Formalisms and languages. In 
European Simulation Symposium (ESS), pages 168-172. Society for Computer Simulation International (SCS), October 1996. Genoa, Italy.

Levi Lúcio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, Maris Jukss. FTG+PM: An Integrated Framework for Investigating Model 
Transformation Chains. System Design Languages Forum (SDL) 2013, Montreal, Quebec.  LNCS Volume 7916, pp 182-202, 2013.
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European Simulation Symposium (ESS), pages 168-172. Society for Computer Simulation International (SCS), October 1996. Genoa, Italy.

Levi Lúcio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, Maris Jukss. FTG+PM: An Integrated Framework for Investigating Model 
Transformation Chains. System Design Languages Forum (SDL) 2013, Montreal, Quebec.  LNCS Volume 7916, pp 182-202, 2013.



 76

Requirements



 77

• R1: three differently coloured lights: red, green, yellow

Requirements



 78

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

Requirements



 79

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

Requirements



 80

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

Requirements



 81

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on 
for 5s

Requirements



 82

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on 
for 5s
• R6: time periods of different phases 

are configurable. 

Requirements



 83

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on 
for 5s
• R6: time periods of different phases 

are configurable. 

• R7: police can interrupt autonomous operation

Requirements



 84

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on 
for 5s
• R6: time periods of different phases 

are configurable. 

• R7: police can interrupt autonomous operation
• Result = blinking yellow light (on -> 1s, off -> 1s)

Requirements



 85

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time
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• R2: at most one light is on at any point in time
• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on for 
5s

• R6: time periods of different phases are configurable. 

• R7: police can interrupt autonomous operation
• Result = blinking yellow light (on -> 1s, off -> 1s)

• R8: police can resume an interrupted traffic light
• Result = light which was on at time of interrupt is 

turned on again
• R9: traffic light can be switched on and off and restores its 
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• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on for 5s

• R6: time periods of different phases are configurable. 

• R7: police can interrupt autonomous operation
• Result = blinking yellow light (on -> 1s, off -> 1s)

• R8: police can resume an interrupted traffic light
• Result = light which was on at time of interrupt is turned on 

again

• R9: traffic light can be switched on and off and restores its state

• R10: a timer displays the remaining time while the light is red or 
green; this timer decreases and displays its value every second. 
The colour of the timer reflects the colour of the traffic light.

Requirements



itemis © 2010-2019 - all rights reserved - 89

YAKINDU Statechart Tools

Statecharts made easy...
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YAKINDU Statechart Tools provides an integrated 
modeling environment for the specification and 
development of reactive, event-driven systems

based on the concept of statecharts.

What are YAKINDU Statechart Tools?
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The Statecharts Language
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States

being in a state

= state <<name>> is 
active

= the system is in 
configuration <<name>>

initial state

exactly one per 
model

“entry point”
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• Model the dynamics of the system:

Transitions

event(params) / output_action(params)
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• Model the dynamics of the system:
• if

Transitions

event(params) / output_action(params)
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• Model the dynamics of the system:
• if
• the system is in state A

Transitions

event(params) / output_action(params)
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• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed

Transitions

event(params) / output_action(params)
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• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed

• then

Transitions

event(params) / output_action(params)
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• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed

• then
1.  output_action is evaluated

Transitions

event(params) / output_action(params)



 99

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed

• then
1.  output_action is evaluated
2.  and the new active state is B

Transitions

event(params) / output_action(params)
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Transitions: Events

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)
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• Spontaneous

Transitions: Events

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)
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• Spontaneous

• Input Event

Transitions: Events

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)
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• Spontaneous

• Input Event

Transitions: Events

queue of event notices

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)
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• Spontaneous

• Input Event

• After Event

Transitions: Events

queue of event notices

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)
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• Spontaneous

• Input Event

• After Event

Transitions: Events

queue of event notices

queue of event notices

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)
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• Spontaneous

• Input Event

• After Event

Transitions: Events

queue of event notices

queue of event notices

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)



 107

• Spontaneous

• Input Event

• After Event

Transitions: Events

queue of event notices

queue of event notices

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)
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• Spontaneous

• Input Event

• After Event

Transitions: Events

queue of event notices

queue of event notices

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)
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Transitions: Raising Output Events

event(in_params) / output_action(out_params)

Syntax for output action:
   ^output_event
means “raise the event output_event (to the environment)”
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Exercise 1 - Requirements

• R1: three differently coloured lights: 
red (R), green (G), yellow (Y)

• R2: at most one light is on at any point in time
• R3: at system start-up, the red light is on
• R4: cycles through red on, green on, and yellow on
• R5: red is on for 60s, green is on for 55s, yellow is 

on for 5s

Environment(Simulated) Plant

<<observe>>

Your model here.

<<control>>
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Exercise 1 - Solution

• R1: three differently coloured lights: 
red (R), green (G), yellow (Y)

• R2: at most one light is on at any point in time
• R3: at system start-up, the red light is on
• R4: cycles through red on, green on, and yellow on
• R5: red is on for 60s, green is on for 55s, yellow 

is on for 5s

Environment(Simulated) Plant

<<observe>>

{R: on, Y: off, G
: off}{R: off, Y: off, G: on}

{R: off, Y: on, G: off}
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requirement modelling approach

R1: three differently coloured 
lights: red (R), green (G), yellow 
(Y) 

For each colour a state is defined. Transitions 
that lead to a state raise the proper out event 
which interacts with the plant.

R2: at most one light is on at any 
point in time 

The states are all contained in a single region 
and thus a exclusive to each other (“or” states).

R3: at system start-up, the red 
light is on 

The entry node points to state Red and the 
entry transition raises the event displayRed.

R4: cycles through red on, green 
on, and yellow on The transitions define this cycle.

R5: red is on for 60s, green is on 
for 55s, yellow is on for 5s Time events are specified on the transitions.

Exercise 1 - Solution
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Data Store
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Full System State

being in a state

= state <<name>> is 
active

= the system is in 
configuration <<name>>
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Full System State

data store snapshot

= variable values

+

being in a state

= state <<name>> is 
active

= the system is in 
configuration <<name>>
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Full System State

data store snapshot

= variable values

+

=
full system state

being in a state

= state <<name>> is 
active

= the system is in 
configuration <<name>>
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Full System State: Initialization

initial state

exactly one per 
model

“entry point”
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Full System State: Initialization

provide default 
value for each 

variable

“initial snapshot”

initial state

exactly one per 
model

“entry point”
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Full System State: Initialization

provide default 
value for each 

variable

“initial snapshot”

Compare:
C++ initialization

implicit state
(program counter)

+ data store

initial state

exactly one per 
model

“entry point”
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Modelled by “guard expression” (evaluates to 
Boolean) in some appropriate language

Transitions: Guards

event(in_params) [guard] / output_action(out_params)
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Modelled by “guard expression” (evaluates to 
Boolean) in some appropriate language

• Spontaneous [True]

Transitions: Guards

event(in_params) [guard] / output_action(out_params)
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Modelled by “guard expression” (evaluates to 
Boolean) in some appropriate language

• Spontaneous [True]

• Data Store 
Variable Value

Transitions: Guards

event(in_params) [guard] / output_action(out_params)

[t1 == 5] 
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Modelled by “guard expression” (evaluates to 
Boolean) in some appropriate language

• Spontaneous [True]

• Data Store 
Variable Value

• Parameter Value

Transitions: Guards

event(in_params) [guard] / output_action(out_params)

e(p1, …, pn) [p1 < 5 && p3 == “a”] 

[t1 == 5] 
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Transitions: Output Actions

event(params) [guard] / output_action(params)
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Transitions: Output Actions

Output Event

 ^output_event(p1, p2, …, pn)

event(params) [guard] / output_action(params)
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Transitions: Output Actions

Assignment (to the non-
modal part of the state)
• by action code in some 

appropriate language

Output Event

 ^output_event(p1, p2, …, pn)

event(params) [guard] / output_action(params)
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• Model the dynamics of the system:

Transitions

event(params) [guard] / output_action(params)
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• Model the dynamics of the system:
• if

Transitions

event(params) [guard] / output_action(params)
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• Model the dynamics of the system:
• if
• the system is in state A

Transitions

event(params) [guard] / output_action(params)
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• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed

Transitions

event(params) [guard] / output_action(params)
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• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to True

Transitions

event(params) [guard] / output_action(params)
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• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to True

• then

Transitions

event(params) [guard] / output_action(params)
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• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to True

• then
1.  output_action is evaluated

Transitions

event(params) [guard] / output_action(params)
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• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to True

• then
1.  output_action is evaluated
2.  and the new active state is B

Transitions

event(params) [guard] / output_action(params)
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Exercise 2

Add data stores
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Exercise 2 - Requirements

TrafficLight

- counter: Integer = 0
- green: Boolean = false
- red: Boolean = false
- yellow: Boolean = false

• R6’: During the last 6 seconds of red being 
on, the traffic light announces to go to 
green by blinking its yellow light (1s on, 1s 
off) while leaving its red light on.

• R6: The time period of the different phases 
should be configurable. 

Your model here.
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Exercise 2 - Requirements

TrafficLight

- counter: Integer = 0
- green: Boolean = false
- red: Boolean = false
- yellow: Boolean = false

<<behavior>>

Make sure that:
- the values of the variables reflect
      which lights are on/off
- you use at least one conditional
      transition

• R6’: During the last 6 seconds of red being 
on, the traffic light announces to go to 
green by blinking its yellow light (1s on, 1s 
off) while leaving its red light on.

• R6: The time period of the different phases 
should be configurable. 

Your model here.
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Exercise 2: Solution

TrafficLight

- counter: Integer = 0
- green: Boolean = false
- red: Boolean = false
- yellow: Boolean = false

• R6’: During the last 6 seconds of red being 
on, the traffic light announces to go to 
green by blinking its yellow light (1s on, 1s 
off) while leaving its red light on.

• R6: The time period of the different phases 
should be configurable. 
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Exercise 2: Solution

TrafficLight

<<behavior>>

- counter: Integer = 0
- green: Boolean = false
- red: Boolean = false
- yellow: Boolean = false

• R6’: During the last 6 seconds of red being 
on, the traffic light announces to go to 
green by blinking its yellow light (1s on, 1s 
off) while leaving its red light on.

• R6: The time period of the different phases 
should be configurable. 
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Statechart Execution
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• A Run-To-Completion (RTC) step is an atomic 
execution step of a state machine.
• It transitions the state machine from a valid state 

configuration into the next valid state configuration.

• RTC steps are executed one after the other - they 
must not interleave.

• New incoming events cannot interrupt the processing 
of the current event and must be stored in an event 
queue

Run-To-Completion Step
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Flat Statecharts: Simulation Algorithm (1)
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Flat Statecharts: Simulation Algorithm (1)
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Flat Statecharts: Simulation Algorithm (1)
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Flat Statecharts: Simulation Algorithm (1)
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Flat Statecharts: Simulation Algorithm (1)
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Flat Statecharts: Simulation Algorithm (1)
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Flat Statecharts: Simulation Algorithm (1)
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Flat Statecharts: Simulation Algorithm (1)
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Flat Statecharts: Simulation Algorithm (2)
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Flat Statecharts: Simulation Algorithm (3)
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Testing Statecharts
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Testing Statecharts

System Under Study Acceptor

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and 
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.

Generator
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Testing Statecharts

Acceptor

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and 
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.

Generator
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Testing Statecharts

Acceptor

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and 
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.
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Testing Statecharts

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and 
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.
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• X-unit testing framework for YAKINDU Statechart Tools

• Test-driven development of Statechart models

• Test generation for various platforms

• Executable in YAKINDU Statechart Tools

• Virtual Time

SCTUnit (beta)
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• Has a unique name

• Has a reference to a 
statechart

• Contains one or more 
operations

Testclass
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• Has a unique name

• A testsuite contains at least one reference to a testclass

Testsuite
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• May have @Test or @Run annotation

• Has a unique name

• May have 0..n parameters

• Has a return type (standard is void)

• Contains 0..n statements

Operation
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// entering / exiting the statechart
enter, exit
// raising an event
raise event : value 

// proceeding time or cycles
proceed 2 cycle

proceed 200 ms

// asserting an expression, expression must evaluate to boolean
assert expression
// is a state active
active(someStatechart.someRegion.someState)

Expressions
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SCTUnit allows to 

• mock operations defined in the statechart model

• verify that an operation was called with certain values

// mocking the return value of an operation

mock mockOperation returns (20)

mock mockOperation(5) returns (30)

// verifying the call of an operation

assert called verifyOperation

assert called verifyOperation with (5, 10)

Mocking Statements
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// if expression

if (x==5) {
doSomething()

} else {
doSomethingelse()

}

Control Structures

// while expression

while (x==5) {

doSomething() 

}
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Test-Driven Development

• Software development process, where software is 
developed driven by tests

• Test-first-approach

• 3 steps you do repeatedly:
• writing a test
• implementing the logic
• refactoring 

Writing test

Test failed

Implementing
Test 
succeeded

Refactoring
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Exercise 3

Testing Models
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• Create a test that checks the following requirements:
• R3: at system start-up, the red light is on
• R4: cycles through red on, green on, and yellow on
• R5: red is on for 60s, green is on for 55s, yellow is 

on for 5s

Exercise 3 – Unit testing Statecharts
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Exercise 3 – Solution
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Hierarchy
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• A state can have entry and exit actions.

• An entry action is executed whenever a state is entered 
(made active).

• An exit action is executed whenever a state is exited 
(made inactive).

• Same expressiveness as transition actions (i.e., syntactic sugar).

Entry/Exit Actions
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• A state can have entry and exit actions.

• An entry action is executed whenever a state is entered 
(made active).

• An exit action is executed whenever a state is exited 
(made inactive).

• Same expressiveness as transition actions (i.e., syntactic sugar).

Entry/Exit Actions
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• A state can have entry and exit actions.

• An entry action is executed whenever a state is entered 
(made active).

• An exit action is executed whenever a state is exited 
(made inactive).

• Same expressiveness as transition actions (i.e., syntactic sugar).

Entry/Exit Actions
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• Model the dynamics of the system:

Transitions

event(params) [guard] / output_action(params)
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• Model the dynamics of the system:
• if

Transitions

event(params) [guard] / output_action(params)
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• Model the dynamics of the system:
• if
• the system is in state A

Transitions

event(params) [guard] / output_action(params)
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• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed

Transitions

event(params) [guard] / output_action(params)
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• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to true

Transitions

event(params) [guard] / output_action(params)
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• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to true

• then

Transitions

event(params) [guard] / output_action(params)
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• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to true

• then
1. the exit actions of state A are evaluated

Transitions

event(params) [guard] / output_action(params)
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• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to true

• then
1. the exit actions of state A are evaluated
2. and output_action is evaluated

Transitions

event(params) [guard] / output_action(params)



 181

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to true

• then
1. the exit actions of state A are evaluated
2. and output_action is evaluated
3. and the enter actions of state B are 

evaluated

Transitions

event(params) [guard] / output_action(params)
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• Model the dynamics of the system:
• if

• the system is in state A
• and event is processed
• and guard evaluates to true

• then
1. the exit actions of state A are evaluated
2. and output_action is evaluated
3. and the enter actions of state B are evaluated
4. the new active state is B

Transitions

event(params) [guard] / output_action(params)
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Entry/Exit Actions: Simulation Algorithm
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• Statechart states can be hierarchically (de-)composed

• Each hierarchical state has exactly one initial/default state

• An active hierarchical state has exactly one active child 
(down to leaf/atomic state)

Hierarchy
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• Statechart states can be hierarchically (de-)composed

• Each hierarchical state has exactly one initial/default state

• An active hierarchical state has exactly one active child 
(down to leaf/atomic state)

Hierarchy

Semantics/Meaning?
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• Statechart states can be hierarchically (de-)composed

• Each hierarchical state has exactly one initial/default state

• An active hierarchical state has exactly one active child 
(down to leaf/atomic state)

Hierarchy

FLATTEN

Semantics/Meaning?
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Hiearchy: Modified Example
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Hiearchy: Modified Example

Semantics/Meaning?
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Hiearchy: Modified Example

FLATTEN

Semantics/Meaning?
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Hiearchy: Modified Example

FLATTEN

Semantics/Meaning?

(unwanted) non-determinism!
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Hiearchy: Modified Example

Semantics/Meaning?

(unwanted) non-determinism!

Statemate, Yakindu, …

FLATTEN
choose outer tra

nsition
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Hiearchy: Modified Example

Semantics/Meaning?

(unwanted) non-determinism!

Statemate, Yakindu, …

Rhapsody, …

FLATTEN

FLATTEN

choose inner transition

choose outer tra
nsition
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Hiearchy: Modified Example

Semantics/Meaning?

(unwanted) non-determinism!
determinism!

Statemate, Yakindu, …

Rhapsody, …

FLATTEN

FLATTEN

choose inner transition

choose outer tra
nsition
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Hiearchy: why inner? … see Code Generation
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• Hierarchical states are an ideal mechanism for hiding complexity

• Parent states can implement common behaviour for their substates

• Hierachical event processing reduces the number of transitions

• Refactoring support: group states into a composite state

 Composite States
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• Concept of effective target state
• Recursive: the effective target 

state of a composite state is its 
initial state

• Effective target state of initial 
transition is Y/X/A

• Initialization:
1. Enter Y, execute enter action
2. Enter X, execute enter action
3. Enter A, execute enter action

Hierarchy: Initialization



 197

Hierarchy: Transitions
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• Assume Z/W/C is active and e 
is processed.

Hierarchy: Transitions
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• Assume Z/W/C is active and e 
is processed.

• Semantics:

Hierarchy: Transitions
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• Assume Z/W/C is active and e 
is processed.

• Semantics:
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leave
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• Assume Z/W/C is active and e 
is processed.

• Semantics:
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hierarchy

Hierarchy: Transitions



 204

• Assume Z/W/C is active and e 
is processed.

• Semantics:
1. Find LCA, collect states to 

leave
2. Leave states up the 

hierarchy
3. Execute action act

Hierarchy: Transitions
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• Assume Z/W/C is active and e is 
processed.

• Semantics:
1. Find LCA, collect states to 

leave
2. Leave states up the hierarchy
3. Execute action act
4. Find effective target state set, 

enter states down the 
hierarchy

Hierarchy: Transitions
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• Assume Z/W/C is active and e is 
processed.

• Semantics:
1. Find LCA, collect states to 

leave
2. Leave states up the hierarchy
3. Execute action act
4. Find effective target state set, 

enter states down the 
hierarchy

Hierarchy: Transitions
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• Assume Z/W/C is active and e is 
processed.

• Semantics:
1. Find LCA, collect states to 

leave
2. Leave states up the hierarchy
3. Execute action act
4. Find effective target state set, 

enter states down the 
hierarchy

Hierarchy: Transitions
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• Assume Z/W/C is active and e is 
processed.

• Semantics:
1. Find LCA, collect states to 

leave
2. Leave states up the hierarchy
3. Execute action act
4. Find effective target state set, 

enter states down the 
hierarchy

Hierarchy: Transitions
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• Assume Z/W/C is active and e is 
processed.

• Semantics:
1. Find LCA, collect states to 

leave
2. Leave states up the hierarchy
3. Execute action act
4. Find effective target state set, 

enter states down the 
hierarchy

Hierarchy: Transitions

RECURSIVE!

Effective target states:
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Exercise 5

Model an 
interruptible traffic light
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• R7a: police can interrupt autonomous operation .
• R7b: autonomous operation can be interrupted during any phase of constant red, yellow 

and green lights. 
• R7c: in interrupted mode the yellow light blinks with a constant frequency of 1 Hz 

(on 0.5s, off 0.5s).
• R8a: police can resume to regular autonomous operation. 
• R8b: when regular operation is resumed, the traffic light restarts with red (R) light on.

Exercise 5 - Requirements
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Exercise 5: Solution

• R7a: police can interrupt autonomous operation .
• R7b: autonomous operation can be interrupted during any phase 

of constant red, yellow and green lights. 
• R7c: in interrupted mode the yellow light blinks with a constant frequency of 1 Hz 

(on 0.5s, off 0.5s).
• R8a: police can resume to regular autonomous operation. 
• R8b: when regular operation is resumed, the traffic light restarts with red (R) light on.
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Exercise 5: Solution

• R7a: police can interrupt autonomous operation .
• R7b: autonomous operation can be interrupted during any phase 

of constant red, yellow and green lights. 
• R7c: in interrupted mode the yellow light blinks with a constant frequency of 1 Hz 

(on 0.5s, off 0.5s).
• R8a: police can resume to regular autonomous operation. 
• R8b: when regular operation is resumed, the traffic light restarts with red (R) light on.



 214

Exercise 5: Solution

• R7a: police can interrupt autonomous operation .
• R7b: autonomous operation can be interrupted during any phase 

of constant red, yellow and green lights. 
• R7c: in interrupted mode the yellow light blinks with a constant frequency of 1 Hz 

(on 0.5s, off 0.5s).
• R8a: police can resume to regular autonomous operation. 
• R8b: when regular operation is resumed, the traffic light restarts with red (R) light on.
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Exercise 5 - Solution

requirement modelling approach

R6: police can interrupt autonomous operation .
An new incoming event police_interrupt triggers a 
transition to a new state interrupted.

R6a: autonomous operation can be interrupted during 
any phase of constant red, yellow and green lights. 

The states Red, Green, and Yellow are grouped within 
a new composite state normal. This state is the source 
state of the transition to state interrupted and thus also 
applies to all substates.

R7: in interruptetd mode the yellow light blinks with a 
constant frequency of 1 Hz. (on 0.5s, off 0.5s). 

State interrupted is a composite state with two 
substates Yellow and Black. These switch the yellow 
light on and off. Timed transitions between these states 
ensure correct timing for blinking.

R8: police can resume to regular autonomous operation. 
A transition triggered by police_interrupt leads from 
state interrupted to state normal.

R8a: when  regular operation is resumed the traffic light 
restarts with red (R) light on.

When activating state normal its substate Red is 
activated by default.
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History
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History: pseudo-states H shallow history H* deep history
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History: pseudo-states H shallow history H* deep history

• Assume Z/Y/X/B is active, 
and m is processed
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History: pseudo-states H shallow history H* deep history

• Assume Z/Y/X/B is active, 
and m is processed
• Effective target state: E
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History: pseudo-states H shallow history H* deep history

• Assume Z/Y/X/B is active, 
and m is processed
• Effective target state: E

• If h_s is processed
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History: pseudo-states H shallow history H* deep history

• Assume Z/Y/X/B is active, 
and m is processed
• Effective target state: E

• If h_s is processed
• Effective target state: 

Z/Y/D
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History: pseudo-states H shallow history H* deep history

• Assume Z/Y/X/B is active, 
and m is processed
• Effective target state: E

• If h_s is processed
• Effective target state: 

Z/Y/D

• If h_d is processed
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History: pseudo-states H shallow history H* deep history

• Assume Z/Y/X/B is active, 
and m is processed
• Effective target state: E

• If h_s is processed
• Effective target state: 

Z/Y/D

• If h_d is processed
• Effective target state: 

Z/Y/X/B
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History: pseudo-states H shallow history H* deep history

• Assume Z/Y/X/B is active, 
and m is processed
• Effective target state: E

• If h_s is processed
• Effective target state: 

Z/Y/D

• If h_d is processed
• Effective target state: 

Z/Y/X/B

RECURSIVE!

Effective target states:

H H*
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Exercise 6

Model an interruptible 
traffic light that restores 

its state
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Exercise 6: Requirements

• R8b: when regular operation is resumed the traffic light restarts 
with the last active light color red (R), green (G), or yellow (Y) on.
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Exercise 6: Solution

• R8b: when regular operation is resumed the traffic light restarts 
with the last active light color red (R), green (G), or yellow (Y) on.
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Exercise 6: Solution

• R8b: when regular operation is resumed the traffic light restarts 
with the last active light color red (R), green (G), or yellow (Y) on.
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Exercise 7

Model an interruptible 
traffic light that restores 

its state and can be 
switched on/off
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Exercise 7: Requirements

• R9: The traffic light can be switched on and off.
• R9a: The traffic light is initially off.
• R9b: If the traffic light is off none of its lights (R/G/Y) are on.
• R9c: After switching off and on again the traffic light must 

switch on the light that was on before the switching off.

Add another level of hierarchy that supports switching 
on and off the entire traffic light. Go into detail with 
shallow and deep histories.
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Exercise 7: Solution
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Exercise 7: Alternative Solution
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Orthogonality
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Orthogonal Components/Regions: “and” states
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Orthogonal Components/Regions: “and” states

Semantics/Meaning?
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Orthogonal Components/Regions: “and” states

CARTESIAN PRODUCT

Semantics/Meaning?
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Orthogonal Components/Regions: “and” states

CARTESIAN PRODUCT

Semantics/Meaning?

RECURSIVE!

Effective target states:

H H*
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Parallel (In)Dependence 
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Parallel (In)Dependence
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Parallel (In)Dependence
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Input Segment: nmnn

Orthogonality: Communication

Orthogonal Components can communicate:

• raising/broadcasting local events:
       ^’<<event name>>

• state reference is a transition guard:
       INSTATE(<<state location>>)
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Simulation Algorithm
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Conditional Transitions

• getEffectiveTargetStates(): select one True-branch

• Conditions should not overlap to avoid non-determinism
● in Yakindu, priority makes deterministic
● “else” branch is required 

• Equivalent (in this case) to two transitions:
• A – e[a > 2] -> C
• A – e[a <= 2] -> B
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Exercise 8

Add a timer 
to the traffic light
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Exercise 8: Requirements

• R10a: A timer displays the remaining time while the light is red or green.
• R10b: This timer decreases and displays its value every second.
• R10c: The colour of the timer reflects the colour of the traffic light.

In this exercise a timer must be modelled. 
It introduces the use of orthogonal regions.
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Exercise 8: Requirements

• R10a: A timer displays the remaining time while the light is red or green.
• R10b: This timer decreases and displays its value every second.
• R10c: The colour of the timer reflects the colour of the traffic light.

In this exercise a timer must be modelled. 
It introduces the use of orthogonal regions.

TrafficLight
- timer: int
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Exercise 8: Solution TrafficLight
- timer: int

• R10a: A timer displays the remaining time while the light is red or green.
• R10b: This timer decreases and displays its value every second.
• R10c: The colour of the timer reflects the colour of the traffic light.
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Exercise 8: Solution TrafficLight
- timer: int

• R10a: A timer displays the remaining time while the light is red or green.
• R10b: This timer decreases and displays its value every second.
• R10c: The colour of the timer reflects the colour of the traffic light.
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Solution 8
requirement modelling approach

R10: a timer displays the remaining time while 
the light is red or green

The timer is defined in a second region within 
state on (main in the Yakindu model). 

R10a: This timer decreases and displays its 
value every second.

An internal variable for the counter is 
introduced. When switching the traffic light 
phase, the counter value is set to how long the 
light has been in that phase. Additionally, the 
local events resetTimer, enableTimer, 
and disableTimer are used to synchronize 
traffic light phase switches with the timer.

R10b: The colour of the timer reflects the colour 
of the traffic light.

When the timer is enabled it checks the active 
traffic light phase using the active() function.
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Yakindu syntax

Yakindu:

  - raise e == ^e

  - strict alternation between “or” and “and” states →

    TrafficLightCtrl.main.main.trafficlight.normal.normal.Green

  - active() == INSTATE() == IN() 
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Code Generation
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Code Generation

• Code generators for C, C++, Java, Python, Swift, Typescript, 
SCXML

• Plain-code approach by default

• Very efficient code

• Easy integration of custom generators
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• Various different approaches for 
implementing a state machine (switch / case, 
state transition table, state pattern)

• Which one is the best depends on
 
• Runtime (performance) requirements
• ROM vs. RAM memory
• Debugging capabilities
• Clarity and maintainability

Code Generation
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• Each state 
corresponds to one case

• Each case executes 
state-specific statements 
and state transitions

Switch / Case
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• Specifies the state machine purely 
declaratively.

• One of the dimensions indicates current 
states, while the other indicates events.

State Transition Table
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• Object-oriented implementation, 
behavioural design pattern
• Used by several frameworks like Spring Statemachine, 

Boost MSM or Qt State Machine Framework

• Each State becomes a class, events become methods

• All classes derive 
from a common interface

State Pattern
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Hiearchy: outer vs. inner
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Hiearchy: outer vs. inner

Semantics/Meaning?
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Hiearchy: outer vs. inner

FLATTEN

Semantics/Meaning?
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Hiearchy: outer vs. inner

FLATTEN

Semantics/Meaning?

(unwanted) non-determinism!
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Hiearchy: outer vs. inner

Semantics/Meaning?

(unwanted) non-determinism!

Statemate, Yakindu, …

FLATTEN
choose outer tra

nsition
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Hiearchy: outer vs. inner

Semantics/Meaning?

(unwanted) non-determinism!

Statemate, Yakindu, …

Rhapsody, …

FLATTEN

FLATTEN

choose inner transition

choose outer tra
nsition



 263

Hiearchy: outer vs. inner

Semantics/Meaning?

(unwanted) non-determinism!
determinism!

Statemate, Yakindu, …

Rhapsody, …

FLATTEN

FLATTEN

choose inner transition

choose outer tra
nsition
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Hiearchy: why inner? 
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Code Generation

Fast Memory 
efficient

easy to 
debug

Easy to 
understand

Switch / 
Case

State 
Transition 
Table

State 
Pattern

very simplified illustration

SCT



itemis © 2010-2019 - all rights reserved - 266

• Has a generator ID

• Has a generator entry

• Each generator entry contains 1..n feature-configurations

• Each feature-configuration contains 1..n properties

Code Generator Model
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Generated Code

Sample
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Generated Code

Files

Sample
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Generated Code

Files

 8 files
 1311 lines of code
 302 manual (UI) code

Sample



Interface Setup Code
(Excerpt)



Interface

Generator

Setup Code
(Excerpt)



Interface

Runner

Generator

Setup Code
(Excerpt)
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Deployed Application (Scaled Real-Time)
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Deploying onto Hardware
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Deploying onto Hardware

Interface:
• pinMode(pin_nr, mode)
• digitalWrite(pin_nr, {0, 1})
• digitalRead(pin_nr): {0, 1}



 276

Deploying onto Hardware

Generator
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Deploying onto Hardware

Runner

Deployed Application

Button Code
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Semantic Choices
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Semantic Choices

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.

enabled events: [inc_one, inc_two]
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• A “big step” takes the system from one “quiescent 
state” to the next.
• A “small step” takes the system from one “snapshot” 

to the next (execution of a set of enabled transitions).

• A “combo step” groups multiple small steps.

Big Step, Small Step

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.
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Semantic Options

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.
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Revisiting the Example

enabled events: [inc_one, inc_two]

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.
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concurrency: single

event lifeline: next combo step

assignment: RHS small step

 -> <{t1}, {t3}, {t5}> and

      <{t3}, {t1}, {t5}>

Revisiting the Example

enabled events: [inc_one, inc_two]

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.



 284

concurrency: single

event lifeline: next combo step

assignment: RHS small step

 -> <{t1}, {t3}, {t5}> and

      <{t3}, {t1}, {t5}>

event lifeline: present in remainder

 -> <{t1}, {t5}, {t3}> becomes 
possible

Revisiting the Example

enabled events: [inc_one, inc_two]

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.
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Event Lifeline

285
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Rhapsody Statemate (Default) SCCD

Big Step Maximality Take Many Take Many Take Many

Internal Event Lifeline Queue Next Combo Step Queue

Input Event Lifeline First Combo Step First Combo Step First Combo Step

Priority Source-Child Source-Parent Source-Parent

Concurrency Single Single Single

Semantic Options: Examples

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd 
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016. 
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Composition
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• Composition of multiple Statechart models
• Instantiation
• Communication
• Semantics

• Often solved in code…

Composition of Statecharts
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Composition Example
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Composition Example
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Dynamic Structure: SCCD

Behavior
• Timed

• Autonomous

• Interactive

• Hierarchical

Structure
• Dynamic

• Hierarchical

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd 
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016. 




 296

Dynamic Structure: SCCD

Behavior
• Timed

• Autonomous

• Interactive

• Hierarchical

Structure
• Dynamic

• Hierarchical

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd 
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016. 
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Dynamic Structure: SCCD

Design?

Behavior
• Timed

• Autonomous

• Interactive

• Hierarchical

Structure
• Dynamic

• Hierarchical

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd 
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016. 
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Dynamic Structure: SCCD

StatechartsDesign?

Structure
• Dynamic

• Hierarchical

Behavior
• Timed

• Autonomous

• Interactive

• Hierarchical

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd 
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016. 
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Dynamic Structure: SCCD

StatechartsDesign? + ???

Behavior
• Timed

• Autonomous

• Interactive

• Hierarchical

Structure
• Dynamic

• Hierarchical

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd 
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016. 
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Dynamic Structure: SCCD

StatechartsDesign? + ???

Behavior
• Timed

• Autonomous

• Interactive

• Hierarchical

Structure
• Dynamic

• Hierarchical

Coordination/Communication/Dynamic Structure often 
implemented in code...

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd 
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016. 
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SCCD: Conformance
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Communication: Event Scopes
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Communication: Event Scopes
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Communication: Event Scopes
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Communication: Event Scopes
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Communication: Event Scopes
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Communication: Event Scopes
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SCCD Compiler

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans 
Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd Workshop on 
Engineering Interactive Systems with SCXML, part of EICS 2016, 2016
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https://msdl.uantwerpen.be/documentation/SCCD/

SCCD

https://msdl.uantwerpen.be/documentation/SCCD/
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• Model the behaviour 
of complex, timed, reactive, autonomous systems
• “What” instead of “How” 

(= implemented by Statecharts compiler)

• Abstractions:
• States (composite, orthogonal)
• Transitions
• Timeouts
• Events

• Tool support:
• Yakindu
• SCCD

Recap
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