
Developing Reactive Systems 
using Statecharts

Simon Van Mierlo
University of Antwerp

Belgium
simon.vanmierlo@uantwerpen.be

Hans Vangheluwe
University of Antwerp

Belgium
hans.vangheluwe@uantwerpen.be

Modelling of Software-Intensive Systems

Axel Terfloth
itemis AG
Germany

terfloth@itemis.de



 2

Introduction



 3

Reactive Systems



 4

Reactive Systems



 5

Reactive Systems



 6

Reactive Systems



 7

• Complexity: reactive (to events), timed, 
concurrent, behaviour

Reactive Systems



 8

• Complexity: reactive (to events), timed, concurrent, behaviour
• In contrast to transformational systems, which take input and, 

eventually, produce output

Reactive Systems



 9

Modelling Reactive Systems



 10

• Interaction with the environment: reactive to 
events

Modelling Reactive Systems



 11

• Interaction with the environment: reactive to 
events
• Autonomous behaviour: timeouts + 

spontaneous transitions

Modelling Reactive Systems



 12

• Interaction with the environment: reactive to 
events
• Autonomous behaviour: timeouts + 

spontaneous transitions
• System behaviour: modes (hierarchical) + 

concurrent units

Modelling Reactive Systems



 13

• Interaction with the environment: reactive to 
events
• Autonomous behaviour: timeouts + 

spontaneous transitions
• System behaviour: modes (hierarchical) + 

concurrent units
• Use programming language + threads and 

timeouts (OS)?

Modelling Reactive Systems



 14

• Interaction with the environment: reactive to 
events
• Autonomous behaviour: timeouts + 

spontaneous transitions
• System behaviour: modes (hierarchical) + 

concurrent units
• Use programming language + threads and 

timeouts (OS)?

Modelling Reactive Systems

E. A. Lee, "The problem with threads," in Computer, vol. 39, no. 5, pp. 33-42, May 2006.

“Nontrivial software written with threads, semaphores, and 
mutexes are incomprehensible to humans”



 15

• Interaction with the environment: reactive to 
events
• Autonomous behaviour: timeouts + 

spontaneous transitions
• System behaviour: modes (hierarchical) + 

concurrent units
• Use programming language + threads and 

timeouts (OS)?

Modelling Reactive Systems

E. A. Lee, "The problem with threads," in Computer, vol. 39, no. 5, pp. 33-42, May 2006.

“Nontrivial software written with threads, semaphores, and 
mutexes are incomprehensible to humans”

Programming language (and OS) is too low-level

   -> most appropriate formalism: “what” vs. “how”



 16

Discrete-Event Abstraction



 17

Discrete-Event Abstraction



 18

Discrete-Event Abstraction



 19

Discrete-Event Abstraction



 20

Discrete-Event Abstraction



 21

Discrete-Event Abstraction



 22

State Diagrams



 23

• All states are explicitly represented (unlike Petrinets, for 
example)

State Diagrams



 24

• All states are explicitly represented (unlike Petrinets, for 
example)

• Flat representation (no hierarchy)

State Diagrams



 25

• All states are explicitly represented (unlike Petrinets, for example)

• Flat representation (no hierarchy)

• Does not scale well: becomes too large too quickly to be usable (by  
humans)

State Diagrams



 26

event/
state s0 s1 s2 s3 s4 s5 s6

5 s1, n s2, n s3, n s4, n s5, n s6, n s6, 5

10 s2, n s3, n s4, n s5, n s6, n s6, 5 s6, 10

25 s5, n s6, n s6, 5 s6, 10 S6, 15 s6, 20 s6, 25

O s0, n s1, n s2, n s3, n s4, n s5, n s0, orange 
juice

R s0, n s1, n s2, n s3, n s4, n s5, n s0, apple 
juice

Alternative Representation: Parnas Tables

https://cs.uwaterloo.ca/~jmatlee/Talks/Parnas01.pdf

https://cs.uwaterloo.ca/~jmatlee/Talks/Parnas01.pdf


 27

Moore Machines
• Output only depends on current 

state. 
: Q   Oλ →

• Input stream: 00   →
Output stream: 111

Mealy and Moore Machines

https://www.geeksforgeeks.org/mealy-and-moore-machines/

Mealy Machines
• Output depends on current state 

and on current input. 
: Q x λ ∑   O→

• Input stream: 00   →
Output stream: 11

 FSA: (Q, q0, ∑, O,  ,  ) δ λ

https://www.geeksforgeeks.org/mealy-and-moore-machines/


 28

• Can be made Turing-complete
 → data memory, control flow, branching

• Extend FSAs
 → borrow semantics from Mealy and Moore machines

FSAs: Expressiveness

https://en.wikipedia.org/wiki/Finite-state_machine

https://en.wikipedia.org/wiki/Finite-state_machine


 29

Higraphs

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.



 30

Higraphs

Euler Diagrams

topological notions for set union, difference, intersection

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.



 31

Higraphs

Euler Diagrams

topological notions for set union, difference, intersection

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.

X = {a, b, …, h}

a

b
c

d
e

fg

h

Hypergraphs

topological notion (syntax): connectedness 

Hyperedges:  2⊆ X (undirected),  2⊆ X ×2X (directed). 



 32

Higraphs

Euler Diagrams

topological notions for set union, difference, intersection

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.

X = {a, b, …, h}

a

b
c

d
e

fg

h

Unordered Cartesian Product

Hypergraphs

A = B  C⊗

A
B C

topological notion (syntax): connectedness 

Hyperedges:  2⊆ X (undirected),  2⊆ X ×2X (directed). 



 33

Higraphs

Euler Diagrams

Hypergraphs

Unordered Cartesian Product

+

+

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.



 34

• Clique

Higraph: Examples



 35

• Clique

Higraph: Examples



 36

• ER-Diagrams

Higraphs: Examples



 37

• ER-Diagrams

Higraphs: Examples



 39

• A higraph H is a quadruple

H = (B, E, σ,π)
• B is a finite set of all unique blobs
• E is a set of hyperedges

 ⊆ 2B x 2B

• The subblob function σ

 σ: B  2→ B

  σ0(x) = {x},                     ,   

Higraphs: Formal Definition



 40

• Subblobs relation cycle-free

x  ∉ σ+(x)
• The partitioning function π associates an equivalence 

relationship with x

π : B  2→ B×B

• Equivalence classes πi are orthogonal components of x 
π1(x), π2(x), ..., πkx(x)

• kx = 1 means a single orthogonal component

• Blobs in different orthogonal components of x are 
disjoint

∀y,z  (x) : ∈ σ σ+(y)∩σ+(z) = ∅

Higraphs: Formal Definition



 41

• Apply syntactic constructs to an existing modelling 
language.

• Add specific meaning to these constructs.

• Examples:
• E-R diagrams
• Dataflow/Activity Diagrams
• Inheritance
• Statecharts

Higraphs Applications



 42

Statecharts



 43

• Visual (topological, not geometric) formalism

Statecharts



 44

• Visual (topological, not geometric) formalism
• Precisely defined syntax and semantics

Statecharts



 45

• Visual (topological, not geometric) formalism
• Precisely defined syntax and semantics

• Many uses:
• Documentation (for human communication)
• Analysis (of behavioural properties)
• Simulation
• Code synthesis
• … and derived, such as testing, optimization, …

Statecharts



 46

• Visual (topological, not geometric) formalism
• Precisely defined syntax and semantics

• Many uses:
• Documentation (for human communication)
• Analysis (of behavioural properties)
• Simulation
• Code synthesis
• … and derived, such as testing, optimization, …

Statecharts



 47

• Introduced by David Harel in 1987

Statecharts History

David Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming, Volume 8, Issue 3, 1987, pages 231-274



 48

• Introduced by David Harel in 1987
• Notation based on higraphs = hypergraphs + Euler 

diagrams + unordered Cartesian product

Statecharts History

David Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming, Volume 8, Issue 3, 1987, pages 231-274



 49

• Introduced by David Harel in 1987
• Notation based on higraphs = hypergraphs + Euler 

diagrams + unordered Cartesian product

• Semantics extends deterministic finite state automata 
with:
• Depth (Hierarchy)
• Orthogonality
• Broadcast Communication
• Time
• History
• Syntactic sugar, such as enter/exit actions

Statecharts History

David Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming, Volume 8, Issue 3, 1987, pages 231-274



 50

• Incorporated in UML: State Machines (1995)
• More recent: xUML for semantics of UML subset 

(2002)

• W3 Recommendation: State Chart XML (SCXML) 
(2015)
          https://www.w3.org/TR/scxml/

• Standard: Precise Semantics for State Machines 
(2019)

https://www.omg.org/spec/PSSM/

Statecharts History

https://www.omg.org/spec/PSSM/


 51

Statechart (Variants) Tools

https://ptolemy.berkeley.edu/ptolemyII/ptII11.0/index.ht
m

https://www.eclipse.org/papyrus-rt/

https://www.itemis.com/en/yakindu/state-machine/

https://www.ibm.com/us-en/marketplace/systems-design-rhapsody

https://www.mathworks.com/products/stateflow.html

https://www.eclipse.org/etrice/

https://ptolemy.berkeley.edu/ptolemyII/ptII11.0/index.htm
https://ptolemy.berkeley.edu/ptolemyII/ptII11.0/index.htm
https://www.eclipse.org/papyrus-rt/
https://www.itemis.com/en/yakindu/state-machine/
https://www.ibm.com/us-en/marketplace/systems-design-rhapsody
https://www.mathworks.com/products/stateflow.html
https://www.eclipse.org/etrice/


 52

Running Example

(Physical) Plant



 53

Running Example

(Physical) PlantController

plant
input

plant
output



 54

Running Example

(Physical) PlantController

plant
input

plant
output

System



 55

Running Example

(Physical) Plant

Environment

Controller

plant
input

plant
output

<<sense>>

<<act>>

<<sense>>

System



 56

Running Example

(Physical) Plant

Environment

Controller

plant
input

plant
output

<<sense>>

<<act>>

<<sense>>

System



 57

What are we developing?

(Physical) Plant

Environment

Controller

plant
input

plant
output

<<sense>>

<<act>>

<<sense>>

System



 58

What are we developing?

(Physical) Plant

Environment

Controller <<sense>>

<<act>>

<<sense>>

System

plant
input

plant
output



 59

What are we developing?

• Turn on/off traffic lights (red/green/yellow)
• Display counter value (three-digit)
• Change counter colour (red/green)
• Sense button presses

(Physical) Plant

Environment

Controller <<sense>>

<<act>>

<<sense>>

System

plant
input

plant
output



 60

What are we developing?

• Turn on/off traffic lights (red/green/yellow)
• Display counter value (three-digit)
• Change counter colour (red/green)
• Sense button presses

• Autonomous (timed) behaviour
• Interrupt logic
• Orthogonal (traffic light/timer) behaviour

(Physical) Plant

Environment

Controller <<sense>>

<<act>>

<<sense>>

System

plant
input

plant
output



 61

What are we developing?

• Turn on/off traffic lights (red/green/yellow)
• Display counter value (three-digit)
• Change counter colour (red/green)
• Sense button presses

• Autonomous (timed) behaviour
• Interrupt logic
• Orthogonal (traffic light/timer) behaviour

(Deployed) Statecharts
Model

(Physical) Plant

Environment

Controller <<sense>>

<<act>>

<<sense>>

System

plant
input

plant
output



 62

What are we developing?

• Turn on/off traffic lights (red/green/yellow)
• Display counter value (three-digit)
• Change counter colour (red/green)
• Sense button presses

• Autonomous (timed) behaviour
• Interrupt logic
• Orthogonal (traffic light/timer) behaviour

(Deployed) Statecharts
Model

“Interface”

(Physical) Plant

Environment

Controller <<sense>>

<<act>>

<<sense>>

System

plant
input

plant
output



 63

Deployment (Simulation)

(Physical) Plant

Environment

Controller

plant
input

plant
output

<<sense>>

<<act>>

<<sense>>

System



 64

Deployment (Simulation)

(Physical) Plant

Environment

Controller

plant
input

plant
output

<<sense>>

<<act>>

1

<<sense>>

System



 65

Deployment (Simulation)

(Physical) Plant

Environment

Controller

plant
input

plant
output

<<sense>>

<<act>>

1 2

<<sense>>

System



 66

Deployment (Simulation)

Environment

Controller

plant
input

plant
output

<<sense>>

<<act>>

(Simulated) Plant

1 2

<<sense>>

System



 67

Deployment (Simulation)

Controller

plant
input

plant
output

<<sense>>

<<act>>

(Simulated) Plant

1 2

Environment
System



 68

Deployment (Hardware)

(Physical) Plant

Environment

Controller

plant
input

plant
output

<<sense>>

<<act>>

<<sense>>

System



 69

Deployment (Hardware)

(Physical) Plant

Environment

Controller

plant
input

plant
output

<<sense>>

<<act>>

<<sense>>

(Physical) Plant System



 70

Deployment (Hardware)

(Physical) PlantController

plant
input

plant
output

<<sense>>

<<act>>

<<sense>>

(Physical) Plant

Environment

System



 71

Deployment (Hardware)

(Physical) PlantController

plant
input

plant
output

<<sense>>

<<act>>

<<sense>>

(Physical) Plant

Environment

System



 72

Deployment (Hardware)

(Physical) PlantController

plant
input

plant
output

<<sense>>

<<act>>

<<sense>>

(Physical) Plant

Environment

System



 73

Deployment (Hardware)

(Physical) PlantController

plant
input

plant
output

<<sense>>

<<act>>

<<sense>>

(Physical) Plant

Environment

System



 74

Workflow

Hans Vangheluwe and Ghislain C. Vansteenkiste. A multi-paradigm modeling and simulation methodology: Formalisms and languages. In 
European Simulation Symposium (ESS), pages 168-172. Society for Computer Simulation International (SCS), October 1996. Genoa, Italy.

Levi Lúcio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, Maris Jukss. FTG+PM: An Integrated Framework for Investigating Model 
Transformation Chains. System Design Languages Forum (SDL) 2013, Montreal, Quebec.  LNCS Volume 7916, pp 182-202, 2013.



 75

Workflow

Hans Vangheluwe and Ghislain C. Vansteenkiste. A multi-paradigm modeling and simulation methodology: Formalisms and languages. In 
European Simulation Symposium (ESS), pages 168-172. Society for Computer Simulation International (SCS), October 1996. Genoa, Italy.

Levi Lúcio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, Maris Jukss. FTG+PM: An Integrated Framework for Investigating Model 
Transformation Chains. System Design Languages Forum (SDL) 2013, Montreal, Quebec.  LNCS Volume 7916, pp 182-202, 2013.



 76

Requirements



 77

• R1: three differently coloured lights: red, green, yellow

Requirements



 78

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

Requirements



 79

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

Requirements



 80

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

Requirements



 81

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on 
for 5s

Requirements



 82

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on 
for 5s
• R6: time periods of different phases 

are configurable. 

Requirements



 83

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on 
for 5s
• R6: time periods of different phases 

are configurable. 

• R7: police can interrupt autonomous operation

Requirements



 84

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on 
for 5s
• R6: time periods of different phases 

are configurable. 

• R7: police can interrupt autonomous operation
• Result = blinking yellow light (on -> 1s, off -> 1s)

Requirements



 85

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on 
for 5s
• R6: time periods of different phases 

are configurable. 

• R7: police can interrupt autonomous operation
• Result = blinking yellow light (on -> 1s, off -> 1s)

• R8: police can resume an interrupted traffic light

Requirements



 86

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on 
for 5s
• R6: time periods of different phases 

are configurable. 

• R7: police can interrupt autonomous operation
• Result = blinking yellow light (on -> 1s, off -> 1s)

• R8: police can resume an interrupted traffic light
• Result = light which was on at time of interrupt is 

turned on again

Requirements



 87

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time
• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on for 
5s

• R6: time periods of different phases are configurable. 

• R7: police can interrupt autonomous operation
• Result = blinking yellow light (on -> 1s, off -> 1s)

• R8: police can resume an interrupted traffic light
• Result = light which was on at time of interrupt is 

turned on again
• R9: traffic light can be switched on and off and restores its 

state

Requirements



 88

• R1: three differently coloured lights: red, green, yellow

• R2: at most one light is on at any point in time

• R3: at system start-up, the red light is on

• R4: cycles through red on, green on, and yellow on

• R5: red is on for 60s, green is on for 55s, yellow is on for 5s

• R6: time periods of different phases are configurable. 

• R7: police can interrupt autonomous operation
• Result = blinking yellow light (on -> 1s, off -> 1s)

• R8: police can resume an interrupted traffic light
• Result = light which was on at time of interrupt is turned on 

again

• R9: traffic light can be switched on and off and restores its state

• R10: a timer displays the remaining time while the light is red or 
green; this timer decreases and displays its value every second. 
The colour of the timer reflects the colour of the traffic light.

Requirements



itemis © 2010-2019 - all rights reserved - 89

YAKINDU Statechart Tools

Statecharts made easy...



itemis © 2010-2019 - all rights reserved - 90

YAKINDU Statechart Tools provides an integrated 
modeling environment for the specification and 
development of reactive, event-driven systems

based on the concept of statecharts.

What are YAKINDU Statechart Tools?



 91

The Statecharts Language



 92

States

being in a state

= state <<name>> is 
active

= the system is in 
configuration <<name>>

initial state

exactly one per 
model

“entry point”



 93

• Model the dynamics of the system:

Transitions

event(params) / output_action(params)



 94

• Model the dynamics of the system:
• if

Transitions

event(params) / output_action(params)



 95

• Model the dynamics of the system:
• if
• the system is in state A

Transitions

event(params) / output_action(params)



 96

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed

Transitions

event(params) / output_action(params)



 97

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed

• then

Transitions

event(params) / output_action(params)



 98

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed

• then
1.  output_action is evaluated

Transitions

event(params) / output_action(params)



 99

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed

• then
1.  output_action is evaluated
2.  and the new active state is B

Transitions

event(params) / output_action(params)



 100

Transitions: Events

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)



 101

• Spontaneous

Transitions: Events

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)



 102

• Spontaneous

• Input Event

Transitions: Events

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)



 103

• Spontaneous

• Input Event

Transitions: Events

queue of event notices

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)



 104

• Spontaneous

• Input Event

• After Event

Transitions: Events

queue of event notices

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)



 105

• Spontaneous

• Input Event

• After Event

Transitions: Events

queue of event notices

queue of event notices

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)



 106

• Spontaneous

• Input Event

• After Event

Transitions: Events

queue of event notices

queue of event notices

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)



 107

• Spontaneous

• Input Event

• After Event

Transitions: Events

queue of event notices

queue of event notices

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)



 108

• Spontaneous

• Input Event

• After Event

Transitions: Events

queue of event notices

queue of event notices

<<when triggered>>: <<insert event>>
<<remove timer>>

event(in_params) / output_action(out_params)



 109

Transitions: Raising Output Events

event(in_params) / output_action(out_params)

Syntax for output action:
   ^output_event
means “raise the event output_event (to the environment)”



 110

Exercise 1 - Requirements

• R1: three differently coloured lights: 
red (R), green (G), yellow (Y)

• R2: at most one light is on at any point in time
• R3: at system start-up, the red light is on
• R4: cycles through red on, green on, and yellow on
• R5: red is on for 60s, green is on for 55s, yellow is 

on for 5s

Environment(Simulated) Plant

<<observe>>

Your model here.

<<control>>



 111

Exercise 1 - Solution

• R1: three differently coloured lights: 
red (R), green (G), yellow (Y)

• R2: at most one light is on at any point in time
• R3: at system start-up, the red light is on
• R4: cycles through red on, green on, and yellow on
• R5: red is on for 60s, green is on for 55s, yellow 

is on for 5s

Environment(Simulated) Plant

<<observe>>

{R: on, Y: off, G
: off}{R: off, Y: off, G: on}

{R: off, Y: on, G: off}



itemis © 2010-2019 - all rights reserved - 112

requirement modelling approach

R1: three differently coloured 
lights: red (R), green (G), yellow 
(Y) 

For each colour a state is defined. Transitions 
that lead to a state raise the proper out event 
which interacts with the plant.

R2: at most one light is on at any 
point in time 

The states are all contained in a single region 
and thus a exclusive to each other (“or” states).

R3: at system start-up, the red 
light is on 

The entry node points to state Red and the 
entry transition raises the event displayRed.

R4: cycles through red on, green 
on, and yellow on The transitions define this cycle.

R5: red is on for 60s, green is on 
for 55s, yellow is on for 5s Time events are specified on the transitions.

Exercise 1 - Solution



 113

Data Store



 114

Full System State

being in a state

= state <<name>> is 
active

= the system is in 
configuration <<name>>



 115

Full System State

data store snapshot

= variable values

+

being in a state

= state <<name>> is 
active

= the system is in 
configuration <<name>>



 116

Full System State

data store snapshot

= variable values

+

=
full system state

being in a state

= state <<name>> is 
active

= the system is in 
configuration <<name>>



 117

Full System State: Initialization

initial state

exactly one per 
model

“entry point”



 118

Full System State: Initialization

provide default 
value for each 

variable

“initial snapshot”

initial state

exactly one per 
model

“entry point”



 119

Full System State: Initialization

provide default 
value for each 

variable

“initial snapshot”

Compare:
C++ initialization

implicit state
(program counter)

+ data store

initial state

exactly one per 
model

“entry point”



 120

Modelled by “guard expression” (evaluates to 
Boolean) in some appropriate language

Transitions: Guards

event(in_params) [guard] / output_action(out_params)



 121

Modelled by “guard expression” (evaluates to 
Boolean) in some appropriate language

• Spontaneous [True]

Transitions: Guards

event(in_params) [guard] / output_action(out_params)



 122

Modelled by “guard expression” (evaluates to 
Boolean) in some appropriate language

• Spontaneous [True]

• Data Store 
Variable Value

Transitions: Guards

event(in_params) [guard] / output_action(out_params)

[t1 == 5] 



 123

Modelled by “guard expression” (evaluates to 
Boolean) in some appropriate language

• Spontaneous [True]

• Data Store 
Variable Value

• Parameter Value

Transitions: Guards

event(in_params) [guard] / output_action(out_params)

e(p1, …, pn) [p1 < 5 && p3 == “a”] 

[t1 == 5] 



 124

Transitions: Output Actions

event(params) [guard] / output_action(params)



 125

Transitions: Output Actions

Output Event

 ^output_event(p1, p2, …, pn)

event(params) [guard] / output_action(params)



 126

Transitions: Output Actions

Assignment (to the non-
modal part of the state)
• by action code in some 

appropriate language

Output Event

 ^output_event(p1, p2, …, pn)

event(params) [guard] / output_action(params)



 127

• Model the dynamics of the system:

Transitions

event(params) [guard] / output_action(params)



 128

• Model the dynamics of the system:
• if

Transitions

event(params) [guard] / output_action(params)



 129

• Model the dynamics of the system:
• if
• the system is in state A

Transitions

event(params) [guard] / output_action(params)



 130

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed

Transitions

event(params) [guard] / output_action(params)



 131

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to True

Transitions

event(params) [guard] / output_action(params)



 132

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to True

• then

Transitions

event(params) [guard] / output_action(params)



 133

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to True

• then
1.  output_action is evaluated

Transitions

event(params) [guard] / output_action(params)



 134

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to True

• then
1.  output_action is evaluated
2.  and the new active state is B

Transitions

event(params) [guard] / output_action(params)



 136

Exercise 2

Add data stores



 137

Exercise 2 - Requirements

TrafficLight

- counter: Integer = 0
- green: Boolean = false
- red: Boolean = false
- yellow: Boolean = false

• R6’: During the last 6 seconds of red being 
on, the traffic light announces to go to 
green by blinking its yellow light (1s on, 1s 
off) while leaving its red light on.

• R6: The time period of the different phases 
should be configurable. 

Your model here.



 138

Exercise 2 - Requirements

TrafficLight

- counter: Integer = 0
- green: Boolean = false
- red: Boolean = false
- yellow: Boolean = false

<<behavior>>

Make sure that:
- the values of the variables reflect
      which lights are on/off
- you use at least one conditional
      transition

• R6’: During the last 6 seconds of red being 
on, the traffic light announces to go to 
green by blinking its yellow light (1s on, 1s 
off) while leaving its red light on.

• R6: The time period of the different phases 
should be configurable. 

Your model here.



 139

Exercise 2: Solution

TrafficLight

- counter: Integer = 0
- green: Boolean = false
- red: Boolean = false
- yellow: Boolean = false

• R6’: During the last 6 seconds of red being 
on, the traffic light announces to go to 
green by blinking its yellow light (1s on, 1s 
off) while leaving its red light on.

• R6: The time period of the different phases 
should be configurable. 



 140

Exercise 2: Solution

TrafficLight

<<behavior>>

- counter: Integer = 0
- green: Boolean = false
- red: Boolean = false
- yellow: Boolean = false

• R6’: During the last 6 seconds of red being 
on, the traffic light announces to go to 
green by blinking its yellow light (1s on, 1s 
off) while leaving its red light on.

• R6: The time period of the different phases 
should be configurable. 



 141

Statechart Execution



 142

• A Run-To-Completion (RTC) step is an atomic 
execution step of a state machine.
• It transitions the state machine from a valid state 

configuration into the next valid state configuration.

• RTC steps are executed one after the other - they 
must not interleave.

• New incoming events cannot interrupt the processing 
of the current event and must be stored in an event 
queue

Run-To-Completion Step



 143

Flat Statecharts: Simulation Algorithm (1)



 144

Flat Statecharts: Simulation Algorithm (1)



 145

Flat Statecharts: Simulation Algorithm (1)



 146

Flat Statecharts: Simulation Algorithm (1)



 147

Flat Statecharts: Simulation Algorithm (1)



 148

Flat Statecharts: Simulation Algorithm (1)



 149

Flat Statecharts: Simulation Algorithm (1)



 150

Flat Statecharts: Simulation Algorithm (1)



 151

Flat Statecharts: Simulation Algorithm (2)



 152

Flat Statecharts: Simulation Algorithm (3)



 153

Testing Statecharts



 154

Testing Statecharts

System Under Study Acceptor

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and 
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.

Generator



 155

Testing Statecharts

Acceptor

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and 
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.

Generator



 156

Testing Statecharts

Acceptor

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and 
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.



 157

Testing Statecharts

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and 
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.



itemis © 2010-2019 - all rights reserved - 158

• X-unit testing framework for YAKINDU Statechart Tools

• Test-driven development of Statechart models

• Test generation for various platforms

• Executable in YAKINDU Statechart Tools

• Virtual Time

SCTUnit (beta)



itemis © 2010-2019 - all rights reserved - 159

• Has a unique name

• Has a reference to a 
statechart

• Contains one or more 
operations

Testclass



itemis © 2010-2019 - all rights reserved - 160

• Has a unique name

• A testsuite contains at least one reference to a testclass

Testsuite



itemis © 2010-2019 - all rights reserved - 161

• May have @Test or @Run annotation

• Has a unique name

• May have 0..n parameters

• Has a return type (standard is void)

• Contains 0..n statements

Operation



itemis © 2010-2019 - all rights reserved - 162

// entering / exiting the statechart
enter, exit
// raising an event
raise event : value 

// proceeding time or cycles
proceed 2 cycle

proceed 200 ms

// asserting an expression, expression must evaluate to boolean
assert expression
// is a state active
active(someStatechart.someRegion.someState)

Expressions



itemis © 2010-2019 - all rights reserved - 163

SCTUnit allows to 

• mock operations defined in the statechart model

• verify that an operation was called with certain values

// mocking the return value of an operation

mock mockOperation returns (20)

mock mockOperation(5) returns (30)

// verifying the call of an operation

assert called verifyOperation

assert called verifyOperation with (5, 10)

Mocking Statements



itemis © 2010-2019 - all rights reserved - 164

// if expression

if (x==5) {
doSomething()

} else {
doSomethingelse()

}

Control Structures

// while expression

while (x==5) {

doSomething() 

}



 165

Test-Driven Development

• Software development process, where software is 
developed driven by tests

• Test-first-approach

• 3 steps you do repeatedly:
• writing a test
• implementing the logic
• refactoring 

Writing test

Test failed

Implementing
Test 
succeeded

Refactoring



 166

Exercise 3

Testing Models



 167

• Create a test that checks the following requirements:
• R3: at system start-up, the red light is on
• R4: cycles through red on, green on, and yellow on
• R5: red is on for 60s, green is on for 55s, yellow is 

on for 5s

Exercise 3 – Unit testing Statecharts



 168

Exercise 3 – Solution



 169

Hierarchy



 170

• A state can have entry and exit actions.

• An entry action is executed whenever a state is entered 
(made active).

• An exit action is executed whenever a state is exited 
(made inactive).

• Same expressiveness as transition actions (i.e., syntactic sugar).

Entry/Exit Actions



 171

• A state can have entry and exit actions.

• An entry action is executed whenever a state is entered 
(made active).

• An exit action is executed whenever a state is exited 
(made inactive).

• Same expressiveness as transition actions (i.e., syntactic sugar).

Entry/Exit Actions



 172

• A state can have entry and exit actions.

• An entry action is executed whenever a state is entered 
(made active).

• An exit action is executed whenever a state is exited 
(made inactive).

• Same expressiveness as transition actions (i.e., syntactic sugar).

Entry/Exit Actions



 173

• Model the dynamics of the system:

Transitions

event(params) [guard] / output_action(params)



 174

• Model the dynamics of the system:
• if

Transitions

event(params) [guard] / output_action(params)



 175

• Model the dynamics of the system:
• if
• the system is in state A

Transitions

event(params) [guard] / output_action(params)



 176

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed

Transitions

event(params) [guard] / output_action(params)



 177

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to true

Transitions

event(params) [guard] / output_action(params)



 178

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to true

• then

Transitions

event(params) [guard] / output_action(params)



 179

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to true

• then
1. the exit actions of state A are evaluated

Transitions

event(params) [guard] / output_action(params)



 180

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to true

• then
1. the exit actions of state A are evaluated
2. and output_action is evaluated

Transitions

event(params) [guard] / output_action(params)



 181

• Model the dynamics of the system:
• if
• the system is in state A
• and event is processed
• and guard evaluates to true

• then
1. the exit actions of state A are evaluated
2. and output_action is evaluated
3. and the enter actions of state B are 

evaluated

Transitions

event(params) [guard] / output_action(params)



 182

• Model the dynamics of the system:
• if

• the system is in state A
• and event is processed
• and guard evaluates to true

• then
1. the exit actions of state A are evaluated
2. and output_action is evaluated
3. and the enter actions of state B are evaluated
4. the new active state is B

Transitions

event(params) [guard] / output_action(params)



 183

Entry/Exit Actions: Simulation Algorithm



 184

• Statechart states can be hierarchically (de-)composed

• Each hierarchical state has exactly one initial/default state

• An active hierarchical state has exactly one active child 
(down to leaf/atomic state)

Hierarchy



 185

• Statechart states can be hierarchically (de-)composed

• Each hierarchical state has exactly one initial/default state

• An active hierarchical state has exactly one active child 
(down to leaf/atomic state)

Hierarchy

Semantics/Meaning?



 186

• Statechart states can be hierarchically (de-)composed

• Each hierarchical state has exactly one initial/default state

• An active hierarchical state has exactly one active child 
(down to leaf/atomic state)

Hierarchy

FLATTEN

Semantics/Meaning?



 187

Hiearchy: Modified Example



 188

Hiearchy: Modified Example

Semantics/Meaning?



 189

Hiearchy: Modified Example

FLATTEN

Semantics/Meaning?



 190

Hiearchy: Modified Example

FLATTEN

Semantics/Meaning?

(unwanted) non-determinism!



 191

Hiearchy: Modified Example

Semantics/Meaning?

(unwanted) non-determinism!

Statemate, Yakindu, …

FLATTEN
choose outer tra

nsition



 192

Hiearchy: Modified Example

Semantics/Meaning?

(unwanted) non-determinism!

Statemate, Yakindu, …

Rhapsody, …

FLATTEN

FLATTEN

choose inner transition

choose outer tra
nsition



 193

Hiearchy: Modified Example

Semantics/Meaning?

(unwanted) non-determinism!
determinism!

Statemate, Yakindu, …

Rhapsody, …

FLATTEN

FLATTEN

choose inner transition

choose outer tra
nsition



 194

Hiearchy: why inner? … see Code Generation



itemis © 2010-2019 - all rights reserved - 195

• Hierarchical states are an ideal mechanism for hiding complexity

• Parent states can implement common behaviour for their substates

• Hierachical event processing reduces the number of transitions

• Refactoring support: group states into a composite state

 Composite States



 196

• Concept of effective target state
• Recursive: the effective target 

state of a composite state is its 
initial state

• Effective target state of initial 
transition is Y/X/A

• Initialization:
1. Enter Y, execute enter action
2. Enter X, execute enter action
3. Enter A, execute enter action

Hierarchy: Initialization



 197

Hierarchy: Transitions



 198

• Assume Z/W/C is active and e 
is processed.

Hierarchy: Transitions



 199

• Assume Z/W/C is active and e 
is processed.

• Semantics:

Hierarchy: Transitions



 200

• Assume Z/W/C is active and e 
is processed.

• Semantics:
1. Find LCA, collect states to 

leave

Hierarchy: Transitions



 201

• Assume Z/W/C is active and e 
is processed.

• Semantics:
1. Find LCA, collect states to 

leave
2. Leave states up the 

hierarchy

Hierarchy: Transitions



 202

• Assume Z/W/C is active and e 
is processed.

• Semantics:
1. Find LCA, collect states to 

leave
2. Leave states up the 

hierarchy

Hierarchy: Transitions



 203

• Assume Z/W/C is active and e 
is processed.

• Semantics:
1. Find LCA, collect states to 

leave
2. Leave states up the 

hierarchy

Hierarchy: Transitions



 204

• Assume Z/W/C is active and e 
is processed.

• Semantics:
1. Find LCA, collect states to 

leave
2. Leave states up the 

hierarchy
3. Execute action act

Hierarchy: Transitions



 205

• Assume Z/W/C is active and e is 
processed.

• Semantics:
1. Find LCA, collect states to 

leave
2. Leave states up the hierarchy
3. Execute action act
4. Find effective target state set, 

enter states down the 
hierarchy

Hierarchy: Transitions



 206

• Assume Z/W/C is active and e is 
processed.

• Semantics:
1. Find LCA, collect states to 

leave
2. Leave states up the hierarchy
3. Execute action act
4. Find effective target state set, 

enter states down the 
hierarchy

Hierarchy: Transitions



 207

• Assume Z/W/C is active and e is 
processed.

• Semantics:
1. Find LCA, collect states to 

leave
2. Leave states up the hierarchy
3. Execute action act
4. Find effective target state set, 

enter states down the 
hierarchy

Hierarchy: Transitions



 208

• Assume Z/W/C is active and e is 
processed.

• Semantics:
1. Find LCA, collect states to 

leave
2. Leave states up the hierarchy
3. Execute action act
4. Find effective target state set, 

enter states down the 
hierarchy

Hierarchy: Transitions



 209

• Assume Z/W/C is active and e is 
processed.

• Semantics:
1. Find LCA, collect states to 

leave
2. Leave states up the hierarchy
3. Execute action act
4. Find effective target state set, 

enter states down the 
hierarchy

Hierarchy: Transitions

RECURSIVE!

Effective target states:



 210

Exercise 5

Model an 
interruptible traffic light



 211

• R7a: police can interrupt autonomous operation .
• R7b: autonomous operation can be interrupted during any phase of constant red, yellow 

and green lights. 
• R7c: in interrupted mode the yellow light blinks with a constant frequency of 1 Hz 

(on 0.5s, off 0.5s).
• R8a: police can resume to regular autonomous operation. 
• R8b: when regular operation is resumed, the traffic light restarts with red (R) light on.

Exercise 5 - Requirements



 212

Exercise 5: Solution

• R7a: police can interrupt autonomous operation .
• R7b: autonomous operation can be interrupted during any phase 

of constant red, yellow and green lights. 
• R7c: in interrupted mode the yellow light blinks with a constant frequency of 1 Hz 

(on 0.5s, off 0.5s).
• R8a: police can resume to regular autonomous operation. 
• R8b: when regular operation is resumed, the traffic light restarts with red (R) light on.



 213

Exercise 5: Solution

• R7a: police can interrupt autonomous operation .
• R7b: autonomous operation can be interrupted during any phase 

of constant red, yellow and green lights. 
• R7c: in interrupted mode the yellow light blinks with a constant frequency of 1 Hz 

(on 0.5s, off 0.5s).
• R8a: police can resume to regular autonomous operation. 
• R8b: when regular operation is resumed, the traffic light restarts with red (R) light on.



 214

Exercise 5: Solution

• R7a: police can interrupt autonomous operation .
• R7b: autonomous operation can be interrupted during any phase 

of constant red, yellow and green lights. 
• R7c: in interrupted mode the yellow light blinks with a constant frequency of 1 Hz 

(on 0.5s, off 0.5s).
• R8a: police can resume to regular autonomous operation. 
• R8b: when regular operation is resumed, the traffic light restarts with red (R) light on.



 215

Exercise 5 - Solution

requirement modelling approach

R6: police can interrupt autonomous operation .
An new incoming event police_interrupt triggers a 
transition to a new state interrupted.

R6a: autonomous operation can be interrupted during 
any phase of constant red, yellow and green lights. 

The states Red, Green, and Yellow are grouped within 
a new composite state normal. This state is the source 
state of the transition to state interrupted and thus also 
applies to all substates.

R7: in interruptetd mode the yellow light blinks with a 
constant frequency of 1 Hz. (on 0.5s, off 0.5s). 

State interrupted is a composite state with two 
substates Yellow and Black. These switch the yellow 
light on and off. Timed transitions between these states 
ensure correct timing for blinking.

R8: police can resume to regular autonomous operation. 
A transition triggered by police_interrupt leads from 
state interrupted to state normal.

R8a: when  regular operation is resumed the traffic light 
restarts with red (R) light on.

When activating state normal its substate Red is 
activated by default.



 216

History



 217

History: pseudo-states H shallow history H* deep history



 218

History: pseudo-states H shallow history H* deep history

• Assume Z/Y/X/B is active, 
and m is processed



 219

History: pseudo-states H shallow history H* deep history

• Assume Z/Y/X/B is active, 
and m is processed
• Effective target state: E



 220

History: pseudo-states H shallow history H* deep history

• Assume Z/Y/X/B is active, 
and m is processed
• Effective target state: E

• If h_s is processed



 221

History: pseudo-states H shallow history H* deep history

• Assume Z/Y/X/B is active, 
and m is processed
• Effective target state: E

• If h_s is processed
• Effective target state: 

Z/Y/D



 222

History: pseudo-states H shallow history H* deep history

• Assume Z/Y/X/B is active, 
and m is processed
• Effective target state: E

• If h_s is processed
• Effective target state: 

Z/Y/D

• If h_d is processed



 223

History: pseudo-states H shallow history H* deep history

• Assume Z/Y/X/B is active, 
and m is processed
• Effective target state: E

• If h_s is processed
• Effective target state: 

Z/Y/D

• If h_d is processed
• Effective target state: 

Z/Y/X/B



 224

History: pseudo-states H shallow history H* deep history

• Assume Z/Y/X/B is active, 
and m is processed
• Effective target state: E

• If h_s is processed
• Effective target state: 

Z/Y/D

• If h_d is processed
• Effective target state: 

Z/Y/X/B

RECURSIVE!

Effective target states:

H H*



 225

Exercise 6

Model an interruptible 
traffic light that restores 

its state



 226

Exercise 6: Requirements

• R8b: when regular operation is resumed the traffic light restarts 
with the last active light color red (R), green (G), or yellow (Y) on.



 227

Exercise 6: Solution

• R8b: when regular operation is resumed the traffic light restarts 
with the last active light color red (R), green (G), or yellow (Y) on.



 228

Exercise 6: Solution

• R8b: when regular operation is resumed the traffic light restarts 
with the last active light color red (R), green (G), or yellow (Y) on.



 229

Exercise 7

Model an interruptible 
traffic light that restores 

its state and can be 
switched on/off



 230

Exercise 7: Requirements

• R9: The traffic light can be switched on and off.
• R9a: The traffic light is initially off.
• R9b: If the traffic light is off none of its lights (R/G/Y) are on.
• R9c: After switching off and on again the traffic light must 

switch on the light that was on before the switching off.

Add another level of hierarchy that supports switching 
on and off the entire traffic light. Go into detail with 
shallow and deep histories.



 231

Exercise 7: Solution



 232

Exercise 7: Alternative Solution



 233

Orthogonality



 234

Orthogonal Components/Regions: “and” states



 235

Orthogonal Components/Regions: “and” states

Semantics/Meaning?



 236

Orthogonal Components/Regions: “and” states

CARTESIAN PRODUCT

Semantics/Meaning?



 237

Orthogonal Components/Regions: “and” states

CARTESIAN PRODUCT

Semantics/Meaning?

RECURSIVE!

Effective target states:

H H*



 238

Parallel (In)Dependence 



 239

Parallel (In)Dependence



 240

Parallel (In)Dependence



 241

Input Segment: nmnn

Orthogonality: Communication

Orthogonal Components can communicate:

• raising/broadcasting local events:
       ^’<<event name>>

• state reference is a transition guard:
       INSTATE(<<state location>>)



 242

Simulation Algorithm



 243

Conditional Transitions

• getEffectiveTargetStates(): select one True-branch

• Conditions should not overlap to avoid non-determinism
● in Yakindu, priority makes deterministic
● “else” branch is required 

• Equivalent (in this case) to two transitions:
• A – e[a > 2] -> C
• A – e[a <= 2] -> B



 244

Exercise 8

Add a timer 
to the traffic light



 245

Exercise 8: Requirements

• R10a: A timer displays the remaining time while the light is red or green.
• R10b: This timer decreases and displays its value every second.
• R10c: The colour of the timer reflects the colour of the traffic light.

In this exercise a timer must be modelled. 
It introduces the use of orthogonal regions.



 246

Exercise 8: Requirements

• R10a: A timer displays the remaining time while the light is red or green.
• R10b: This timer decreases and displays its value every second.
• R10c: The colour of the timer reflects the colour of the traffic light.

In this exercise a timer must be modelled. 
It introduces the use of orthogonal regions.

TrafficLight
- timer: int



 247

Exercise 8: Solution TrafficLight
- timer: int

• R10a: A timer displays the remaining time while the light is red or green.
• R10b: This timer decreases and displays its value every second.
• R10c: The colour of the timer reflects the colour of the traffic light.



 248

Exercise 8: Solution TrafficLight
- timer: int

• R10a: A timer displays the remaining time while the light is red or green.
• R10b: This timer decreases and displays its value every second.
• R10c: The colour of the timer reflects the colour of the traffic light.



 249

Solution 8
requirement modelling approach

R10: a timer displays the remaining time while 
the light is red or green

The timer is defined in a second region within 
state on (main in the Yakindu model). 

R10a: This timer decreases and displays its 
value every second.

An internal variable for the counter is 
introduced. When switching the traffic light 
phase, the counter value is set to how long the 
light has been in that phase. Additionally, the 
local events resetTimer, enableTimer, 
and disableTimer are used to synchronize 
traffic light phase switches with the timer.

R10b: The colour of the timer reflects the colour 
of the traffic light.

When the timer is enabled it checks the active 
traffic light phase using the active() function.



 250

Yakindu syntax

Yakindu:

  - raise e == ^e

  - strict alternation between “or” and “and” states →

    TrafficLightCtrl.main.main.trafficlight.normal.normal.Green

  - active() == INSTATE() == IN() 



 251

Code Generation



itemis © 2010-2019 - all rights reserved - 252

Code Generation

• Code generators for C, C++, Java, Python, Swift, Typescript, 
SCXML

• Plain-code approach by default

• Very efficient code

• Easy integration of custom generators



 253

• Various different approaches for 
implementing a state machine (switch / case, 
state transition table, state pattern)

• Which one is the best depends on
 
• Runtime (performance) requirements
• ROM vs. RAM memory
• Debugging capabilities
• Clarity and maintainability

Code Generation



 254

• Each state 
corresponds to one case

• Each case executes 
state-specific statements 
and state transitions

Switch / Case



 255

• Specifies the state machine purely 
declaratively.

• One of the dimensions indicates current 
states, while the other indicates events.

State Transition Table



 256

• Object-oriented implementation, 
behavioural design pattern
• Used by several frameworks like Spring Statemachine, 

Boost MSM or Qt State Machine Framework

• Each State becomes a class, events become methods

• All classes derive 
from a common interface

State Pattern



 257

Hiearchy: outer vs. inner



 258

Hiearchy: outer vs. inner

Semantics/Meaning?



 259

Hiearchy: outer vs. inner

FLATTEN

Semantics/Meaning?



 260

Hiearchy: outer vs. inner

FLATTEN

Semantics/Meaning?

(unwanted) non-determinism!



 261

Hiearchy: outer vs. inner

Semantics/Meaning?

(unwanted) non-determinism!

Statemate, Yakindu, …

FLATTEN
choose outer tra

nsition



 262

Hiearchy: outer vs. inner

Semantics/Meaning?

(unwanted) non-determinism!

Statemate, Yakindu, …

Rhapsody, …

FLATTEN

FLATTEN

choose inner transition

choose outer tra
nsition



 263

Hiearchy: outer vs. inner

Semantics/Meaning?

(unwanted) non-determinism!
determinism!

Statemate, Yakindu, …

Rhapsody, …

FLATTEN

FLATTEN

choose inner transition

choose outer tra
nsition



 264

Hiearchy: why inner? 



 265

Code Generation

Fast Memory 
efficient

easy to 
debug

Easy to 
understand

Switch / 
Case

State 
Transition 
Table

State 
Pattern

very simplified illustration

SCT



itemis © 2010-2019 - all rights reserved - 266

• Has a generator ID

• Has a generator entry

• Each generator entry contains 1..n feature-configurations

• Each feature-configuration contains 1..n properties

Code Generator Model



 267

Generated Code

Sample



 268

Generated Code

Files

Sample



 269

Generated Code

Files

 8 files
 1311 lines of code
 302 manual (UI) code

Sample



Interface Setup Code
(Excerpt)



Interface

Generator

Setup Code
(Excerpt)



Interface

Runner

Generator

Setup Code
(Excerpt)



 273

Deployed Application (Scaled Real-Time)




 274

Deploying onto Hardware



 275

Deploying onto Hardware

Interface:
• pinMode(pin_nr, mode)
• digitalWrite(pin_nr, {0, 1})
• digitalRead(pin_nr): {0, 1}



 276

Deploying onto Hardware

Generator



 277

Deploying onto Hardware

Runner

Deployed Application

Button Code




 278

Semantic Choices



 279

Semantic Choices

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.

enabled events: [inc_one, inc_two]



 280

• A “big step” takes the system from one “quiescent 
state” to the next.
• A “small step” takes the system from one “snapshot” 

to the next (execution of a set of enabled transitions).

• A “combo step” groups multiple small steps.

Big Step, Small Step

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.



 281

Semantic Options

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.



 282

Revisiting the Example

enabled events: [inc_one, inc_two]

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.



 283

concurrency: single

event lifeline: next combo step

assignment: RHS small step

 -> <{t1}, {t3}, {t5}> and

      <{t3}, {t1}, {t5}>

Revisiting the Example

enabled events: [inc_one, inc_two]

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.



 284

concurrency: single

event lifeline: next combo step

assignment: RHS small step

 -> <{t1}, {t3}, {t5}> and

      <{t3}, {t1}, {t5}>

event lifeline: present in remainder

 -> <{t1}, {t5}, {t3}> becomes 
possible

Revisiting the Example

enabled events: [inc_one, inc_two]

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.



 285

Event Lifeline

285



 286

Rhapsody Statemate (Default) SCCD

Big Step Maximality Take Many Take Many Take Many

Internal Event Lifeline Queue Next Combo Step Queue

Input Event Lifeline First Combo Step First Combo Step First Combo Step

Priority Source-Child Source-Parent Source-Parent

Concurrency Single Single Single

Semantic Options: Examples

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd 
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016. 



 291

Composition



 292

• Composition of multiple Statechart models
• Instantiation
• Communication
• Semantics

• Often solved in code…

Composition of Statecharts



 293

Composition Example



 294

Composition Example



 295

Dynamic Structure: SCCD

Behavior
• Timed

• Autonomous

• Interactive

• Hierarchical

Structure
• Dynamic

• Hierarchical

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd 
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016. 




 296

Dynamic Structure: SCCD

Behavior
• Timed

• Autonomous

• Interactive

• Hierarchical

Structure
• Dynamic

• Hierarchical

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd 
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016. 




 297

Dynamic Structure: SCCD

Design?

Behavior
• Timed

• Autonomous

• Interactive

• Hierarchical

Structure
• Dynamic

• Hierarchical

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd 
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016. 




 298

Dynamic Structure: SCCD

StatechartsDesign?

Structure
• Dynamic

• Hierarchical

Behavior
• Timed

• Autonomous

• Interactive

• Hierarchical

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd 
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016. 




 299

Dynamic Structure: SCCD

StatechartsDesign? + ???

Behavior
• Timed

• Autonomous

• Interactive

• Hierarchical

Structure
• Dynamic

• Hierarchical

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd 
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016. 




 300

Dynamic Structure: SCCD

StatechartsDesign? + ???

Behavior
• Timed

• Autonomous

• Interactive

• Hierarchical

Structure
• Dynamic

• Hierarchical

Coordination/Communication/Dynamic Structure often 
implemented in code...

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd 
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016. 




 301

SCCD: Conformance



 302

Communication: Event Scopes



 303

Communication: Event Scopes



 304

Communication: Event Scopes



 305

Communication: Event Scopes



 306

Communication: Event Scopes



 307

Communication: Event Scopes



 308

SCCD Compiler

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans 
Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd Workshop on 
Engineering Interactive Systems with SCXML, part of EICS 2016, 2016



 309

https://msdl.uantwerpen.be/documentation/SCCD/

SCCD

https://msdl.uantwerpen.be/documentation/SCCD/


 310

• Model the behaviour 
of complex, timed, reactive, autonomous systems
• “What” instead of “How” 

(= implemented by Statecharts compiler)

• Abstractions:
• States (composite, orthogonal)
• Transitions
• Timeouts
• Events

• Tool support:
• Yakindu
• SCCD

Recap


	Slide: 1
	Introduction
	Reactive Systems (1)
	Reactive Systems (2)
	Reactive Systems (3)
	Reactive Systems (4)
	Reactive Systems (5)
	Reactive Systems (6)
	Modelling Reactive Systems (1)
	Modelling Reactive Systems (2)
	Modelling Reactive Systems (3)
	Modelling Reactive Systems (4)
	Modelling Reactive Systems (5)
	Modelling Reactive Systems (6)
	Modelling Reactive Systems (7)
	Discrete-Event Abstraction (1)
	Discrete-Event Abstraction (2)
	Discrete-Event Abstraction (3)
	Discrete-Event Abstraction (4)
	Discrete-Event Abstraction (5)
	Discrete-Event Abstraction (6)
	State Diagrams (1)
	State Diagrams (2)
	State Diagrams (3)
	State Diagrams (4)
	Alternative Representation: Parnas Tables
	Mealy and Moore Machines
	FSAs: Expressiveness
	Higraphs (1)
	Higraphs (2)
	Higraphs (3)
	Higraphs (4)
	Higraphs
	Higraph: Examples (1)
	Higraph: Examples (2)
	Higraphs: Examples (1)
	Higraphs: Examples (2)
	Slide: 15
	Higraphs: Formal Definition
	Higraphs Applications
	Statecharts (1)
	Statecharts (2)
	Statecharts (3)
	Statecharts (4)
	Statecharts (5)
	Statecharts History (1)
	Statecharts History (2)
	Statecharts History (3)
	Statecharts History
	Statechart (Variants) Tools
	Running Example (1)
	Running Example (2)
	Running Example (3)
	Running Example (4)
	Running Example (5)
	What are we developing? (1)
	What are we developing? (2)
	What are we developing? (3)
	What are we developing? (4)
	What are we developing? (5)
	What are we developing? (6)
	Deployment (Simulation) (1)
	Deployment (Simulation) (2)
	Deployment (Simulation) (3)
	Deployment (Simulation) (4)
	Deployment (Simulation) (5)
	Deployment (Hardware) (1)
	Deployment (Hardware) (2)
	Deployment (Hardware) (3)
	Deployment (Hardware) (4)
	Deployment (Hardware) (5)
	Deployment (Hardware) (6)
	Workflow (1)
	Workflow (2)
	Requirements (1)
	Requirements (2)
	Requirements (3)
	Requirements (4)
	Requirements (5)
	Requirements (6)
	Requirements (7)
	Requirements (8)
	Requirements (9)
	Requirements (10)
	Requirements (11)
	Requirements (12)
	Requirements (13)
	YAKINDU Statechart Tools Statecharts made easy...
	What are YAKINDU Statechart Tools?
	The Statecharts Language
	States
	Transitions (1)
	Transitions (2)
	Transitions (3)
	Transitions (4)
	Transitions (5)
	Transitions (6)
	Transitions (7)
	Transitions: Events (1)
	Transitions: Events (2)
	Transitions: Events (3)
	Transitions: Events (4)
	Transitions: Events (5)
	Transitions: Events (6)
	Transitions: Events (7)
	Transitions: Events (8)
	Transitions: Events (9)
	Slide: 34
	Exercise 1 - Requirements
	Exercise 1 - Solution
	Exercise 1 - Solution
	Data Store
	Full System State (1)
	Full System State (2)
	Full System State (3)
	Full System State: Initialization (1)
	Full System State: Initialization (2)
	Full System State: Initialization (3)
	Transitions: Guards (1)
	Transitions: Guards (2)
	Transitions: Guards (3)
	Transitions: Guards (4)
	Transitions: Output Actions (1)
	Transitions: Output Actions (2)
	Transitions: Output Actions (3)
	Transitions (1)
	Transitions (2)
	Transitions (3)
	Transitions (4)
	Transitions (5)
	Transitions (6)
	Transitions (7)
	Transitions (8)
	Exercise 2 Add data stores
	Exercise 2 - Requirements (1)
	Exercise 2 - Requirements (2)
	Exercise 2: Solution (1)
	Exercise 2: Solution (2)
	Statechart Execution
	Run-To-Completion Step
	Flat Statecharts: Simulation Algorithm (1) (1)
	Flat Statecharts: Simulation Algorithm (1) (2)
	Flat Statecharts: Simulation Algorithm (1) (3)
	Flat Statecharts: Simulation Algorithm (1) (4)
	Flat Statecharts: Simulation Algorithm (1) (5)
	Flat Statecharts: Simulation Algorithm (1) (6)
	Flat Statecharts: Simulation Algorithm (1) (7)
	Flat Statecharts: Simulation Algorithm (1) (8)
	Flat Statecharts: Simulation Algorithm (2)
	Flat Statecharts: Simulation Algorithm (3)
	Testing Statecharts
	Testing Statecharts (1)
	Testing Statecharts (2)
	Testing Statecharts (3)
	Testing Statecharts (4)
	SCTUnit (beta)
	Testclass
	Testsuite
	Operation
	Expressions
	Mocking Statements
	Control Structures
	Test-Driven Development
	Exercise 3 Testing Models
	Exercise 3 – Unit testing Statecharts
	Exercise 3 – Solution
	Hierarchy
	Entry/Exit Actions (1)
	Entry/Exit Actions (2)
	Entry/Exit Actions (3)
	Transitions (1)
	Transitions (2)
	Transitions (3)
	Transitions (4)
	Transitions (5)
	Transitions (6)
	Transitions (7)
	Transitions (8)
	Transitions (9)
	Transitions (10)
	Entry/Exit Actions: Simulation Algorithm
	Hierarchy (1)
	Hierarchy (2)
	Hierarchy (3)
	Hiearchy: Modified Example (1)
	Hiearchy: Modified Example (2)
	Hiearchy: Modified Example (3)
	Hiearchy: Modified Example (4)
	Hiearchy: Modified Example (5)
	Hiearchy: Modified Example (6)
	Hiearchy: Modified Example (7)
	Slide: 72
	Composite States
	Hierarchy: Initialization
	Hierarchy: Transitions (1)
	Hierarchy: Transitions (2)
	Hierarchy: Transitions (3)
	Hierarchy: Transitions (4)
	Hierarchy: Transitions (5)
	Hierarchy: Transitions (6)
	Hierarchy: Transitions (7)
	Hierarchy: Transitions (8)
	Hierarchy: Transitions (9)
	Hierarchy: Transitions (10)
	Hierarchy: Transitions (11)
	Hierarchy: Transitions (12)
	Hierarchy: Transitions (13)
	Exercise 5 Model an interruptible traffic light
	Exercise 5 - Requirements
	Exercise 5: Solution (1)
	Exercise 5: Solution (2)
	Exercise 5: Solution (3)
	Exercise 5 - Solution
	History
	History (1)
	History (2)
	History (3)
	History (4)
	History (5)
	History (6)
	History (7)
	History (8)
	Slide: 82
	Exercise 6: Requirements
	Exercise 6: Solution (1)
	Exercise 6: Solution (2)
	Slide: 85
	Exercise 7: Requirements
	Exercise 7: Solution
	Exercise 7: Alternative Solution
	Orthogonality
	Orthogonality (1)
	Orthogonality (2)
	Orthogonality (3)
	Orthogonality (4)
	Parallel (In)Dependence
	Parallel (In)Dependence
	Parallel (In)Dependence
	Orthogonality: Communication
	Simulation Algorithm
	Conditional Transitions
	Exercise 8 Add a timer to the traffic light
	Exercise 8: Requirements (1)
	Exercise 8: Requirements (2)
	Exercise 8: Solution (1)
	Exercise 8: Solution (2)
	Slide: 100
	Solution 8
	Code Generation
	Code Generation
	Code Generation
	Switch / Case
	State Transition Table
	State Pattern
	Slide: 108 (1)
	Slide: 108 (2)
	Slide: 108 (3)
	Slide: 108 (4)
	Slide: 108 (5)
	Slide: 108 (6)
	Slide: 108 (7)
	Slide: 109
	Code Generation
	Code Generator Model
	Generated Code (1)
	Generated Code (2)
	Generated Code (3)
	Slide: 113 (1)
	Slide: 113 (2)
	Slide: 113 (3)
	Deployed Application (Scaled Real-Time)
	Deploying onto Hardware (1)
	Deploying onto Hardware (2)
	Deploying onto Hardware (1)
	Deploying onto Hardware (2)
	Semantic Choices
	Semantic Choices
	Big Step, Small Step
	Semantic Options
	Revisiting the Example (1)
	Revisiting the Example (2)
	Revisiting the Example (3)
	Event Lifeline
	Semantic Options: Examples
	Composition
	Composition of Statecharts
	Composition Example
	Composition Example
	Dynamic Structure: SCCD (1)
	Dynamic Structure: SCCD (2)
	Dynamic Structure: SCCD (3)
	Dynamic Structure: SCCD (4)
	Dynamic Structure: SCCD (5)
	Dynamic Structure: SCCD (6)
	SCCD: Conformance
	Communication: Event Scopes (1)
	Communication: Event Scopes (2)
	Communication: Event Scopes (3)
	Communication: Event Scopes (4)
	Communication: Event Scopes (5)
	Communication: Event Scopes (6)
	SCCD Compiler
	SCCD
	Recap

