Developing Reactive Systems Using Statecharts

Modelling of Software-Intensive Systems

Simon Van Mierlo Hans Vangheluwe Axel Terfloth
University of Antwerp University of Antwerp itemis AG
Belgium Belgium Germany
simon.vanmierlo@uantwerpen.be hans.vangheluwe@uantwerpen.be terfloth@itemis.de

FLANDERS

Universiteit Ansymo NEXOI’ MAKE M G 11
B'Antwerpen (o i wDPySy tems & Software Modelling &g ST X % C1

Univer: of Antwerp sity of Antwerp

Introduction

Reactive Systems

CPT DATA

THRUSTER

APAM

Reactive Systems

Reactive Systems

Reactive Systems

* Complexity: reactive (to events), timed, concurrent, behaviour

Reactive Systems

W ~v'n‘:..§\ . R
- TAN .

¥ Qv
\3'\

uuuuuuuu

* Complexity: reactive (to events), timed, concurrent, behaviour

* |n contrast to transformational systems, which take input and,
eventually, produce output

Modelling Reactive Systems

* Interaction with the environment: reactive to events

Modelling Reactive Systems

* Interaction with the environment: reactive to events

e Autonomous behaviour: timeouts + spontaneous
transitions

Modelling Reactive Systems

* Interaction with the environment: reactive to events

e Autonomous behaviour: timeouts + spontaneous
transitions

e System behaviour: modes (hierarchical) + concurrent units

Modelling Reactive Systems

* Interaction with the environment: reactive to events

e Autonomous behaviour: timeouts + spontaneous
transitions

e System behaviour: modes (hierarchical) + concurrent units
e Use programming language + threads and timeouts (OS)?

Modelling Reactive Systems

* Interaction with the environment: reactive to events

* Autonomous behaviour: timeouts + spontaneous
transitions

e System behaviour: modes (hierarchical) + concurrent units

e Use programming language + threads and timeouts (OS)?

“Nontrivial software written with threads, semaphores, and
mutexes are incomprehensible to humans”

E. A. Lee, "The problem with threads," in Computer, vol. 39, no. 5, pp. 33-42, May 2006.

Modelling Reactive Systems

E. A. Lee, "The problem with threads," in Computer, vol. 39, no. 5, pp. 33-42, May 2006.

A N

Discrete-Event Abstraction " TNk wans B

Discrete-Event Abstraction

A

input key_up| O ©
key_enter : e 0 . 0

Discrete-Event Abstraction

A

input key_upf O ?
event segment ey down ; Q :
key_enter ' e} o) ' o
time
output move_up Q Q
event segment move_down) '
shoot |+ 1 O : Q
low_fuel ' - o] ' '

time

Discrete-Event Abstraction

A

|nput key_up (0] <|>
key_enter ! o} (0] | 0
time
output move_up N @
event segment move_down o)
shoot | 1+ 1 © ii 0
low_fuel : bk o} ; |

time

Discrete-Event Abstraction TN waRs B

A

input key_up (o] ?
key_enter ! o} 0 | 0
time
system
state trajectory A
shooting — o S—
A | ﬁ
moving > < ¥
low_fuel —
time
output move_up N @
event segment move_down ! o} :
shoot| 1} © : 0
low_fuel . P o} ')

time

Discrete-Event Abstraction

input
event segment

behavioural
model

output
event segment

A

key_up (o} Q
key_down E Q E
key_enter ' e} o) ' o
time
k [low_fuel_detected()] /
rmoving \ ~low_fuel
Amove. up Aey_down / ow_Tue
move_down [fuel_ok()]
[low_fuel_detected()] /
aftEr(3S)AIOW_fUEI
key_down / key_enter /(" shooting
\ ~move_down _A. "shoot
move_up ? ?
move_down E o E
shoot| 1 i O : 0
low_fuel ' . o ' :

time

State Diagrams -

\ 3
10, 10

o

State Diagrams

3,3
10, 10

» All states are explicitly represented (unlike Petrinets, for example)

State Diagrams

3,3
10, 10

L ice
;\\wv\\.)

R,

» All states are explicitly represented (unlike Petrinets, for example)

* Flat representation (no hierarchy)

State Diagrams

3,9
10, 10

» All states are explicitly represented (unlike Petrinets, for example)
* Flat representation (no hierarchy)

* Does not scale well: becomes too large too quickly to be usable (by humans)

Alternative Representation: Parnas Tables

Sy N

S,, N
S3, N
Se, N

S, N

S, N

S3, N
Sy N
Sg) O

S,, N

S,, N

Sy N
Sc, N
S, 10

S3, N

S3, N

R app\e o

event™ o | Sl s | s s s | s

S, N
Sg, N
Se, 15

Sy N

Sy N

Sg, N
Se, O
S, 20

S, N

Se, N

Sgr 5

S, 10

S, 25
So» Orange

juice

So, apple
juice

Mealy and Moore Machines

FSA:(Q, 90, 2,0, 8, A)

Moore Machines Mealy Machines

e OQOutput only depends on current state. e Qutput depends current state and
AnQ—>0 current input. A: Qx> - O

* |nput: 00 -> Output: 111 * |nput: 00 -> Output: 11

https://www.geeksforgeeks.org/mealy-and-moore-machines/

https://www.geeksforgeeks.org/mealy-and-moore-machines/

. 1 ,(—' W0)— ; :i
FSAs: Expressiveness 2 N) \ 2

e 2\

4 - \\

Combinational logic
Finite-state machine
\ /
Pushdown automaton
. /
Turing Machine

.)

e Statecharts can be made turing-complete
-> data memory, control flow, branching

* Extends FSAs
-> borrows semantics from Mealy and Moore machines

https://en.wikipedia.org/wiki/Finite-state _machine

https://en.wikipedia.org/wiki/Finite-state_machine

Higraphs

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.

Higraphs

Euler Diagrams

All A are B. No A is B. Some A is in B. Some A is not in 5.
J— iy j— J— I —
B : \ Y A N P A \
N A B | [(4B Al)B)
/ & "\ \ \, v, L £ .--,. n;') A b - 'x_n. P 4
|I A I| — - - T
™, v

topological notions for set union, difference, intersection

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.

Higraphs

Euler Diagrams

All A are B. No A is B. Some A isin B, Some A is not in B.
o~ IH T Vi e . o = . ; e ;H--‘_I . .- -~ II'».-; e, ..
N A B | [(4B Al)B)
Il' Fy , 'lI \, r) ry A ry ry , , y Vi
.
o topological notions for set union, difference, intersection
Hypergraphs
a
a topological notion (syntax): connectedness
e C
b ¢ b.
e €
d o
\ e f g
h * e h Hyperedges: € 2* (undirected), € 2X x2X (directed).
1
a graph a hypergraph X=1a,b, ..., hj

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.

Higraphs

Euler Diagrams Unordered Cartesian Product
All A are B. No A is B. Some A isin B, Some A is not in B. B A
- B ., o, ._,-' \ I. -~ ;w-\.l = . II'-..-; . .. i
N A B | [(4B Al)B)
I|' & L '|I ! F;) A L) . i r LS) , .)
| | | L L e N
" o
o topological notions for set union, difference, intersection A=BxC
Hypergraphs
a
d topological notion (syntax): connectedness
e C
b c b,
e €
d o
\ e f g
h * e h Hyperedges: € 2* (undirected), € 2X x2X (directed).
1

X={a b, .., h
a graph a hypergraph { /

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.

Higraphs

blobs orthogonal

. N ///7 CDmpGHCHE‘
=T
+ ’ @q i

Hypergraphs E
,)

Unordered Cartesian Product
]

Euler Diagrams

David Harel. On Visual Formalisms. Communications of the ACM. Volume 31, No. 5. 1988. pp. 514 - 530.

Higraphs: Examples

* ER-Diagrams

/" WORKS)

SECRETARIES

,
N,
N,
N

PILOTS

T

-
-

- DATES

e N
EMPLOYEES 410 ON

\ £
\ ~
\
AN
™,
‘ \
\

A
SALARIES
AN
// \\
d ™,
/CAN N
\\ FLY / ATRCRAFT
3, ye |
\\ / —

Higraphs: Examples

* ER-Diagrams

SECRETARIES

EMPLOYEES

PILOTS | —

DATES

SALARIES

ATRCRAFT

“employees /
secretaries

‘others

(pilots

S
411@ 5
)\\09_/

'

-

salaries

»

—» | months

dates

rears
3 .
_»
o
{
. A
arrived,
all
. In
A
p
/
Fs v L
[equipment
‘nuts

Catrcraft | L

“bolts

J

Higraphs: Formal Definition

* A higraph His a quadruple

H=(B, E, omn)
* Bis afinite set of all unique blobs
e Eisasetof hyperedges

C 28x 2B
* The subblob function o

0:B > 28

o%(x) = {x}, ol = Uy eai(x) o(y), 0*(x) = UiZq 0'(x)

bbbbb

Higraphs: Formal Definition)

B ‘ 3
(PJ |
E

G/

Subblobs* cycle-free
X & o*(x)

The partitioning function 1 associates equivalence relationship with
X

m:B—> 288

Equivalence classes 1t are orthogonal components of x
T[l(X),T[Z(X),...,T[kX(X)

k, =1 means a single orthogonal component

Blobs in different orthogonal components of x are disjoint
Vy,z € o(x) : o*(y)No*(z) = D

Higraphs Applications

* Apply syntactic constructs to existing language.
* Add specific meaning to these constructs.

* Examples:
* E-R diagrams
* Dataflow/Activity Diagrams
* Inheritance
* Statecharts

 Visual (topological, not geometric) formalism

Statecharts

 Visual (topological, not geometric) formalism

* Precisely defined syntax and semantics

Statecharts

 Visual (topological, not geometric) formalism
* Precisely defined syntax and semantics

* Many uses:

* Documentation (for human communication)
Analysis (of behavioural properties)
Simulation
Code synthesis

... and derived, such as testing, optimization, ...

Statecharts

 Visual (topological, not geometric) formalism
* Precisely defined syntax and semantics

* Many uses:
* Documentation (for human communication)
. Anatysistof-behavi I o5
e Simulation
e Code synthesis

e ... and derived, such as testing, optimization, ...

Statecharts History

* Introduced by David Harel in 1987

David Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming, Volume 8, Issue 3, 1987, Pages 231-274

Statecharts History

* Introduced by David Harel in 1987

* Notation based on higraphs = hypergraphs + Euler diagrams +
unordered cartesian product

David Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming, Volume 8, Issue 3, 1987, Pages 231-274

Statecharts History

* Introduced by David Harel in 1987

* Notation based on higraphs = hypergraphs + Euler diagrams +
unordered cartesian product

e Semantics extend deterministic finite state automata with:

e Depth (Hierarchy)

Orthogonality

Broadcast Communication

* Time

History

Syntactic sugar, such as enter/exit actions

David Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming, Volume 8, Issue 3, 1987, Pages 231-274

Statecharts History

Incorporated in UML: State Machines (1995)
More recent: xXUML for semantics of UML subset (2002)

W3 Recommendation: State Chart XML (SCXML) (2015)
https://www.w3.org/TR/scxml/

Standard: Precise Semantics for State Machines (2019)
https://www.omg.org/spec/PSSM/

https://www.omg.org/spec/PSSM/

Statechart (Variants) Tools

STATEMATE: A Working Environment for the
Development of Complex Reactive Systems

software

https://www.ibm.com/us-en/marketplace/systems-design-rhapsody

Matlab Simulink Stateflow

S https://www.mathworks.com/products/stateflow.html

Ptolcmg Il \ W~
: ' b YAKINDU sTatecHART TooLS

https://www.itemis.com/en/yakindu/state-machine/

' o
e (etrice.
P ARPYRUS

—REAL TINM

https://www.eclipse.org/papyrus-rt/

https://www.eclipse.org/etrice/

1]

Bran Selic, Garth Gullekson,
d Pa yvarg

https://ptolemy.berkeley.edu/ptolemyII/ptII11.0/index.htm
https://www.eclipse.org/papyrus-rt/
https://www.itemis.com/en/yakindu/state-machine/
https://www.ibm.com/us-en/marketplace/systems-design-rhapsody
https://www.mathworks.com/products/stateflow.html
https://www.eclipse.org/etrice/

Running Example

(Physical) Plant

Running Example

Controller

plant
input

plant

output

(Physical) Plant

Running Example

Controller (Physical) Plant

Running Example

Controller
plant oy d:” i
input 7771111 ¥ AN
plant
—
output

Running Example

Controller (Physical) Plant

plant
input

plant
4—
output

<<Lact>>

A

P

What are we developing?

Environment

Controller (Physical) Plant <<sense>>

<
\s @/7
Ses

What are we developing?

Environment

Controller

What are we developing?

Environment

Controller

* Turn on/off traffic lights (red/green/yellow)
* Display counter value (three-digit)

* Change counter colour (red/green)

* Sense button presses

What are we developing?

Environment

Controller

* Turn on/off traffic lights (red/green/yellow)
* Display counter value (three-digit)

* Change counter colour (red/green)

* Sense button presses

* Autonomous (timed) behaviour
* Interrupt logic
* Orthogonal (traffic light/timer) behaviour

What are we developing?

Environment

Controller

T e

(Deployed) Statecharts
Model

* Turn on/off traffic lights (red/green/yellow)
* Display counter value (three-digit)

* Change counter colour (red/green)

* Sense button presses

* Autonomous (timed) behaviour
* Interrupt logic
* Orthogonal (traffic light/timer) behaviour

What are we developing?

Environment

Controller

,:‘,‘4 '~ té- o
7771111 DA

(Deployed) Statecharts
Model

* Turn on/off traffic lights (red/green/yellow)
* Display counter value (three-digit)

* Change counter colour (red/green)

* Sense button presses

* Autonomous (timed) behaviour
* Interrupt logic
* Orthogonal (traffic light/timer) behaviour

Deployment (Simulation)

Controller

plant

input

plant

output

(Physical) Plant

Environment
— g

System

<<sense>>

<
<

-
-
S@’)s
(SAN N

<<act>>

Deployment (Simulation)

Controller

plant

input

plant

)

output

(Physical) Plant

System

<<sense>>

<
<

-
-
6‘@0&
(SAN N

<<act>>

Environment
— g

X

AR

Deployment (Simulation)

Controller

plant

input

plant

(Physical) Plant

Environment

System

<<sense>>

-
-
6‘@0&
(SAN N

<<act>>

|%| Trafficlight - O X

’ ONI/OFF H POLICE INTERRUPT ‘

Deployment (Simulation)

Controller

plant

input

plant

(Simulated) Plant

Environment

System

<<sense>>

-
-
6‘@0&
(SAN N

<<act>>

|%| Trafficlight - O X

’ ONI/OFF H POLICE INTERRUPT ‘

Deployment (Simulation)

Controller

plant

input

plant

output

(Simulated) Plant

System

<<sense>>

Environment

<<act>>

|%| Trafficlight - O X

’ ONI/OFF H POLICE INTERRUPT ‘

Deployment (Hardware)

E Controller (Physical) Plant

! plant =

E input

E plant

i output ®

b o o o o e = e e e e e e e e e e e e e e e e e e =

Deployment (Hardware)

Controller

b o o o o e

Deployment (Hardware)

Controller

b o o o o e

Deployment (Hardware)

(Physical) Plant

Controller

A

b o o o o e

Deployment (Hardware)

(Physical) Plant

§|
byl
Controller £

Deployment (Hardware)

(Physical) Plant

§|
byl
Controller £

Workflow

.—)-[:GatherReqgs |

:Text. Req.

M:Statecharts
:ModelSystem |

:ReviseSystem =<

GatherReqs

Verify System

(D) manual activity
() automatic activity

{False

O manual transformation

:CheckOutput

(© automatic transformation

True}>(®)

[]
1
1
[]
[]
1
[]
1
1
]
1
1
]
[]
1
]
[]
[]
Text. Req. ,
[]
(]
DefineTestCases m ; (:Definelnput] (:DefineTestCases)
ModelSystem 1
[]
' IT: TraceLang TC: Statecharts
Statecharts '
. :Simulate) (:Test ,
’—)éf.imulate :
DefineInput ' ST: Tracelang r TT: Tracelang :Boolean
QO Test TracelLang :
Generate ' :CheckOutput {False]
CheckOutput Code () .
Bektutau Run . :Boolean
' True]
—| Boolean Prog. L|=— 1 r 1 [
| | | l : {False} True]
:
[]
[]
' (:GenerateCode]
:
(]
[]
l:l language : [] model artefact :TraceLang
:
1
[]
]
1

Hans Vangheluwe and Ghislain C. Vansteenkiste. A multi-paradigm modeling and simulation methodology: Formalisms and languages. In
European Simulation Symposium (ESS), pages 168-172. Society for Computer Simulation International (SCS), October 1996. Genoa, Italy.

Levi Lucio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, Maris Jukss. FTG+PM: An Integrated Framework for Investigating Model
Transformation Chains. System Design Languages Forum (SDL) 2013, Montreal, Quebec. LNCS Volume 7916, pp 182-202, 2013.

Workflow

.—x-[:GatherReqs |

:Text. Req.

M:Statecharts
:ModelSystem |

:ReviseSystem =<

GatherReqs

Verify System

(D) manual activity
() automatic activity

{False

O manual transformation

:CheckOutput

(© automatic transformation

True}>(®)

[]
1
1
[]
[]
1
[]
1
1
]
1
1
]
[]
1
]
[]
[]
Text. Req. ,
[]
(]
DefinelesiCases &ResviseSystem : [:DefineInput) (:DeﬁneTestCases)
ModelSystem]
[]
' IT: TraceLang TC: Statecharts
Statecharts '
, :Simulate | | iTest .
Simulate :
DefineInput % : ST: Tracelang r TT: TracelLang :Boolean
QO Test TraceLan :
9| Generate . :CheckOutput [False]
CheckOutput Code () .
Ecxbuteu Run . :Boolean
. True]
—| Boolean Prog. L|=— 1 r 1 [
| | | l : {False} True]
:
[]
[]
' (:GenerateCode]
'
(]
[]
l:l language : I:l model artefact :TraceLang
:
1
[]
]
1

Hans Vangheluwe and Ghislain C. Vansteenkiste. A multi-paradigm modeling and simulation methodology: Formalisms and languages. In
European Simulation Symposium (ESS), pages 168-172. Society for Computer Simulation International (SCS), October 1996. Genoa, Italy.

Levi Lucio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, Maris Jukss. FTG+PM: An Integrated Framework for Investigating Model
Transformation Chains. System Design Languages Forum (SDL) 2013, Montreal, Quebec. LNCS Volume 7916, pp 182-202, 2013.

Requirements

@—| :GatherReqs |
arts|
| :ModelSystem

Verify System

Requirements - CEEE)

arcs
| :ModelSystem

e R1: three differently coloured lights: red, green, yellow &

Requirements - CEEE)
=

e R1:three differently coloured lights: red, green, yellow — ===

* R2: at most one light is on at any point in time

Requirements - CEEE)
=

:ModelSystem

e R1:three differently coloured lights: red, green, yellow — ===
* R2: at most one light is on at any point in time
* R3: at system start-up, the red light is on

Requirements - CEEE)
=

:Model@

R1: three differently coloured lights: red, green, yellow ===

R2: at most one light is on at any point in time

R3: at system start-up, the red light is on

R4: cycles through red on, green on, and yellow on

Requirements - CEEE)
= 'MdISIJ

R1: three differently coloured lights: red, green, yellow ===

R2: at most one light is on at any point in time

R3: at system start-up, the red light is on

R4: cycles through red on, green on, and yellow on

R5: red is on for 60s, green is on for 55s, yellow is on for 5s

Requirements - CEEE)
= 'MdISE

e R1: three differently coloured lights: red, green, yellow &

e R2: at most one light is on at any point in time
e R3: at system start-up, the red light is on

e R4: cycles through red on, green on, and yellow on

* R5:red is on for 60s, green is on for 55s, yellow is on for 5s
* R6: time periods of different phases are configurable.

Requirements - CEEE)

* R1:
* R2:
* R3:
* R4:
* R5:
* R6:
* R/:

]
:ModelSystem

three differently coloured lights: red, green, yellow =~ ===

at most one light is on at any point in time
at system start-up, the red light is on

cycles through red on, green on, and yellow on

red is on for 60s, green is on for 55s, yellow is on for 5s
time periods of different phases are configurable.
police can interrupt autonomous operation

Requirements - CEEE)
= -MdlsE

e R1: three differently coloured lights: red, green, yellow &

e R2: at most one light is on at any point in time
e R3: at system start-up, the red light is on

e R4: cycles through red on, green on, and yellow on

* R5:red is on for 60s, green is on for 55s, yellow is on for 5s
* R6: time periods of different phases are configurable.

e R7: police can interrupt autonomous operation
e Result = blinking yellow light (on -> 1s, off -> 1s)

Requirements - CEEE)
= -MdlsE

e R1:three differently coloured lights: red, green, yellow — t===?

* R2: at most one light is on at any point in time
* R3: at system start-up, the red light is on

* R4: cycles through red on, green on, and yellow on

* R5:red is on for 60s, green is on for 55s, yellow is on for 5s
e R6: time periods of different phases are configurable.

* R7: police can interrupt autonomous operation
e Result = blinking yellow light (on -> 1s, off -> 15s)

e R&: police can resume an interrupted traffic light

Requirements

* R1

* R2:
* R3:
* R4:
* R5:
* R6:
* R7/:

: three differently coloured lights: red, green, yellow

at most one light is on at any point in time

at system start-up, the red light is on

cycles through red on, green on, and yellow on

red is on for 60s, green is on for 55s, yellow is on for 5s
time periods of different phases are configurable.

police can interrupt autonomous operation

e Result = blinking yellow light (on -> 1s, off -> 15)

* R3

: police can resume an interrupted traffic light

@—| :GatherReqs |
=
| :ModelSystem

—"| Verify System

e Result = light which was on at time of interrupt is turned on again

Requirements

 R1

* R2:
* R3:
* R4:
* R5:
* R6:
* R7/:

: three differently coloured lights: red, green, yellow

at most one light is on at any point in time

at system start-up, the red light is on

cycles through red on, green on, and yellow on

red is on for 60s, green is on for 55s, yellow is on for 5s
time periods of different phases are configurable.

police can interrupt autonomous operation

e Result = blinking yellow light (on -> 1s, off -> 15)

°* R&

: police can resume an interrupted traffic light

@—| :GatherReqs |
=
| :ModelSystem

_"| Verify System

e Result = light which was on at time of interrupt is turned on again

e R9: traffic light can be switched on and off and restores its state

Requirements

* R1

* R2:
* R3:
* R4:
* R5:
* R6:
* R7/:

: three differently coloured lights: red, green, yellow

at most one light is on at any point in time

at system start-up, the red light is on

cycles through red on, green on, and yellow on

red is on for 60s, green is on for 55s, yellow is on for 5s
time periods of different phases are configurable.

police can interrupt autonomous operation

e Result = blinking yellow light (on -> 1s, off -> 15)

* R3

: police can resume an interrupted traffic light

@—| :GatherReqs |
=
| :ModelSystem

_"| Verify System

e Result = light which was on at time of interrupt is turned on again

e R9: traffic light can be switched on and off and restores its state

 R10: a timer displays the remaining time while the light is red or green;
this timer decreases and displays its value every second. The colour of the
timer reflects the colour of the traffic light.

What are YAKINDU Statechart Tools?

YAKINDU Statechart Tools provides an integrated
modeling environment for the specification and
development of reactive, event-driven systems
based on the concept of statecharts.

—_— Editing —
heating man regicn
Interface : I
Oon
in event onOff T
in event tempDrop off | onOff

e
m Nt : N r ‘—‘
var tempSetPoint : intege Ot ° High

Alarm !iemoDrop ‘ after Sz after Ss

Validation

—

| Bunsal g uone|nwis

Code Generation

The Statecharts Language

States

[<<name>>j <<name>>]

being in a state initial state

= state <<name>> is active
exactly one per model

= the system is in configuration

“entry point”
<<name>>

Transitions

5

* Model the dynamics of the system:

Transitions

5

* Model the dynamics of the system:

o if

Transitions

A e

* Model the dynamics of the system:

o if

e the system is in state A

Transitions

event(params)

A

* Model the dynamics of the system:

° /f
* the system is in state A
e and event is processed

Transitions

event(params)

A

* Model the dynamics of the system:
o if
e the system is in state A
e and event is processed
* then

Transitions

event(params) / output_action(params)

A

* Model the dynamics of the system:
o if
e the system is in state A
e and event is processed
* then
1. output_action is evaluated

Transitions

event(params) / output_action(params)

A

* Model the dynamics of the system:
o if
* the system is in state A
e and event is processed
* then
1. output_action is evaluated
2. and the new active state is B

Transitions: Events

event(params) / output_action(params)

Transitions: Events

event(params) / output_action(params)

°Spontaneous‘ A I I B

Transitions: Events

event(params) / output_action(params)

* Spontaneous

* Input Event

eSS0
RS0

Transitions: Events

event(params) / output_action(params)

* Spontaneous

event queue

* Input Event - €3 €5 €5

!

processing
|

eSS0
RS0

Transitions: Events

event(params) / output_action(params)

* Spontaneous

event queue

* Input Event A I - €3 €1 €5
0

processing
|

after(10)

e After Event A

OO@

Transitions: Events

event(params) / output_action(params)

* Spontaneous

event queue

* Input Event A - €3 €5 €5

!

processing
|

event queue

e After Event A after(10)

€s; e,

ORORG
DRORG

A t; & t

processing
|

Transitions: Events

* Spontaneous

* Input Event

e After Event

event(params) / output_action(params)

A

A

after(10)

SROND

o))=

event queue

- €3 €; €5

!

processing
|

event queue

€3 €5

I processing

t; & 1

<<when triggered>>:

Transitions: Events

event(params) / output_action(params)

* Spontaneous

event queue

* Input Event A - €3 €5 €5

!

processing
|

event queue

e After Event A after(10)

te; €5 €| -

ORORG
DRORG

I (i t; & t;

processing ‘

<<when triggered>>: <<insert event>>

Transitions: Events

event(params) / output_action(params)

* Spontaneous

event queue

* Input Event A - €3 €5 €5

!

processing
|

event queue

e After Event A after(10)

te; €5 €,

ORORG
DRORG

processing
|

I A t; b

<<when triggered>>: <<insert event>>
<<remove timer>>

Transitions: Raising Output Events

event(params) / output_action(params)

Syntax for output action:

after(55) / ~displayYellow MNoutput_event

means “raise the event output _event (to the environment)”

Exercise 1 - Requirements o (Gotreress)

Your model here.

|M :Statecha rts| IE

| :ModelSystem |

viseSystem |
Verify System

* R1:three differently coloured lights: red (R), green (G), yellow (Y)
e R2:at most one light is on at any point in time

* R3:at system start-up, the red light is on

* R4: cycles through red on, green on, and yellow on
 R5:redison for 60s, green is on for 55s, yellow is on for 5s

(Simulated) Plant Environment

<<control>>

Exercise 1 - Solution

/ ~displayRed

B/

after(60) / ~displayGreen

after(5) /
~displayRed

Green

after(55) / ~displayYellow

Yellow !

R1:
R2:
R3:
R4:
R5:

.—-l :GatherReqs |
|M:Statecharts| IE
| :ModelSystem |

viseSystem |

three differently coloured lights: red (R), green (G), yellow (Y)
at most one light is on at any point in time

at system start-up, the red light is on

cycles through red on, green on, and yellow on

red is on for 60s, green is on for 55s, yellow is on for 5s

(Simulated) Plant

Environment

<<observe>> [i§

<«

main
N v &

0 l / raise displayRed

Red

after 60s
/ raise displayGreen

Green

after S5s
/ raise displayYellow

Yellow

after 5 s
/ raise displayRed

requirement modelling approach

For each color a state is defined. Transitions that lead to a
state raise the proper out event which interacts with the
plant.

R1: three differently coloured lights: red
(R), green (G), yellow (Y)

R2: at most one light is on at any point in The states are all contained in a single region and thus a
time exclusive to each other.

The entry node points to state Red and the entry transition

:) o lioht | | .
R3: at system start-up, the red light is on raises the event displayRed.

R4: cycles through red on, green on, and

vellow on The transitions define this cycle.

R5: red is on for 60s, green is on for 55s,

vellow is on for 5s Time events are specified on the transitions.

Data Store

Full System State

[<<name>>j

being in a state
= state <<name>> is active

= the system is in configuration
<<name>>

Full System State

DataStore
- vary: t; = valy
[<<name>>j -+ - var,: t, = val,
- var,: t, = val,

being in a state
= state <<name>> is active data store snapshot

= the system is in configuration = variables and their value
<<name>>

Full System State

DataStore
- vary: t; = valy
[<<name>>j -+ - var,: t, = val,
- var,: t, = val,

being in a state

= state <<name>> is active data store snapshot
= the system is in configuration = variables and their value
<<name>>

full system state

Full System State: Initialization

<<name>>]

initial state
exactly one per model

“entry point”

Full System State: Initialization

<<name>>

DataStore

- vary: t; = valy
- var,: t, = val,

- var,: t, = val,

initial state
exactly one per model

“entry point”

provide default value
for each variable

“Iinitial snapshot”

Full System State: Initialization

DataStore
- vary: t; = valy

1 int main() {

<<name>> - var,: t, = val, §)
- var,: t, = val,
Compare:
initial state orovide default value C++ initialization
exactly one per model for each variable implicit state

“entry point”

“initial snapshot”

(program counter)
+ data store

Transitions: Guards

event(params) [guard] / output_action(params)

 Modelled by action code in some appropriate language

Transitions: Guards

event(params) [guard] / output_action(params)

 Modelled by action code in some appropriate language

* Spontaneous | A I I B |

Transitions: Guards

event(params) [guard] / output_action(params)

 Modelled by action code in some appropriate language

* Spontaneous

DataStore

e Data Store Variable

(]
l A } [t, == 5] { 3 I - var;: t; = val;

- var,: t, = val,

- var,: t, = val,

Transitions: Guards

event(params) [guard] / output_action(params)

Modelled by action code in some appropriate language

* Spontaneous

DataStore

Data Store Variable A

@
[tl == 5] I B | - Varl: tl == Va|1

- var,: t, = val,

- var,: t, = val,

Parameter Variable

RGN

e(py - P,) [P, == 5 && p; == “a”] {]
B

Transitions: Output Actions

event(params) [guard] / output_action(params)

Transitions: Output Actions

event(params) [guard] / output_action(params)

*Output Event

Noutput_event(p,, p, ..., P,)

Green |

after(55) / ~displayYellow

Yellow |

Transitions: Output Actions

event(params) [guard] / output_action(params)

| .
*Output Event . * Assignment (to the non-modal part of
|
Noutput_event(py, P, ..., P,) | the state)
- 1 27 n I . . .
| * by action code in some appropriate
| language
Green | :)
3. total state
| . Trafficlight
after(55) / ~displayYellow | TrafficLight 0L Tﬁ:;leh :
| timer: int _______________
Yel IO : <<behaviour>> lr_afﬁ_cl.lgh_t
W timer=0 i 1 timer| 1 |
: 7 (=l
: after(1) / timer += 1 """"""" laﬁ_c“gh_t 1
20 timer
| Coome)
P A e errrer PPN

Transitions

5

* Model the dynamics of the system:

Transitions

5

* Model the dynamics of the system:

o if

Transitions

A e

* Model the dynamics of the system:

o if

e the system is in state A

Transitions

event(params)

A

* Model the dynamics of the system:

° /f
* the system is in state A
e and event is processed

Transitions

event(params) [guard]

A

* Model the dynamics of the system:
o if
* the system is in state A
e and event is processed
* and guard evaluates to true

Transitions

event(params) [guard]

A

* Model the dynamics of the system:
o if
* the system is in state A
e and event is processed
* and guard evaluates to true
* then

Transitions

event(params) [guard] / output_action(params)

A

* Model the dynamics of the system:
o if
e the system is in state A
e and event is processed
* and guard evaluates to true
* then
1. output_action is evaluated

Transitions

event(params) [guard] / output_action(params)

A

* Model the dynamics of the system:

o if
* the system is in state A
e and event is processed
* and guard evaluates to true

* then
1. output_action is evaluated
2. and the new active state is B

Transition Execution

A
exit / action
J trigger [condition] / action
if Alis active
{
if (
((trigger specified AND occurred) OR (no trigger specified))
AND

((condition specified AND is true) OR (no condition specified))

exit A

execute exit action
execute transition action
execute entry action
enter B

}

P entry / action

-

Exercise 2

Add data stores

Exercise 2 - Requirements o (Gotreress)

|M:Statecharts| lE

| :ModelSystem |

viseSystem |
Verify System

* R6: In the last 6 seconds of red being on, the light
prepares to go to green by blinking its yellow light (1s
on, 1s off) in addition to its red light being on.

 R7:The time period of the different phases should be

configurable.

Your model here.

TrafficLight Make sure that:
- counter: Integer = 0 - the values of the variables reflect
- green: Boolean = false which lights are on/off
- red: Boolean = false - you use at least one conditional
- yellow: Boolean = false transition

<<behavior>>

Exercise 2: Solution

.—-l :GatherReqs |

|M :Statecha rts| IE

| :ModelSystem |

viseSystem |
Verify System

/ red = true

AN

after(5) /
Red red = true

after(54) /
yellow = true

after(1) /
yellow = false

Prep_Y a;g’;;‘;“"‘,”:l Prep_B

— yellow = true

[counter == 3]/
green = true; yellow = false;
red = false; counter = 0

Green

.*

after(55) / green = false ; yellow = true

Yellow

* R6: In the last 6 seconds of red being on, the light
prepares to go to green by blinking its yellow light (1s
on, 1s off) in addition to its red light being on.

 R7:The time period of the different phases should be
configurable.

TrafficLight

- counter: Integer =0
- green: Boolean = false
- red: Boolean = false
- yellow: Boolean = false

<<behavior>>

Statechart Execution

Run-To-Completion Step

A Run-To-Completion (RTC) step is an atomic execution step of a
state machine.

* |t transforms the state machine from a valid state configuration into
the next valid state configuration.

e RTC steps are executed one after each other - they must not
interleave.

* New incoming events cannot interrupt the processing of the current
event and must be stored in an event queue

Flat Statecharts: Simulation Algorithm (1)

simulate(sc: Statechart) {

Flat Statecharts: Simulation Algorithm (1)

simulate(sc: Statechart) {
input_events = initialize queue()
output_events = initialize_ queue()
timers initialize_set()

curr_state sc.initial_state
for (var in sc.variables) {
var.value = var.initial value

}

Flat Statecharts: Simulation Algorithm (1)

simulate(sc: Statechart) {
input_events = initialize queue()
output_events = initialize_ queue()
timers initialize_set()
curr_state sc.initial_state
for (var in sc.variables) {
var.value = var.initial value

}
while (not finished()) {

Flat Statecharts: Simulation Algorithm (1)

simulate(sc: Statechart) {
input_events = initialize queue()
output_events = initialize_ queue()
timers initialize_set()
curr_state sc.initial_state
for (var in sc.variables) {
var.value = var.initial value

}
while (not finished()) {

curr_event = input_events.get()
enabled_transitions = find_enabled_transitions(curr_state, curr_event, sc.variables)

Flat Statecharts: Simulation Algorithm (1)

simulate(sc: Statechart) {
input_events = initialize queue()
output_events = initialize_ queue()
timers initialize_set()
curr_state sc.initial_state
for (var in sc.variables) {
var.value = var.initial value

W M =2

(#)]

J

}
while (not finished()) {

curr_event = input_events.get()
enabled_transitions = find_enabled_transitions(curr_state, curr_event, sc.variables)
chosen_transition = choose_one_transition(enabled_transition)

(#4]

11

Flat Statecharts: Simulation Algorithm (1)

simulate(sc: Statechart) {
input_events = initialize queue()
output_events = initialize_ queue()
timers initialize_set()
curr_state sc.initial_state
for (var in sc.variables) {
var.value = var.initial value

W M =2

(#)]

J

}
while (not finished()) {

curr_event = input_events.get()
enabled_transitions = find_enabled_transitions(curr_state, curr_event, sc.variables)
chosen_transition = choose_one_transition(enabled_transition)

1

curr_state = chosen_transition.target

Flat Statecharts: Simulation Algorithm (1)

simulate(sc: Statechart) {
input_events = initialize queue()
output_events = initialize_ queue()
timers initialize_set()
curr_state sc.initial_state
for (var in sc.variables) {
var.value = var.initial value

W M =2

(#)]

J

}
while (not finished()) {

curr_event = input_events.get()
enabled_transitions = find_enabled_transitions(curr_state, curr_event, sc.variables)
chosen_transition = choose_one_transition(enabled_transition)

1

curr_state = chosen_transition.target
chosen_transition.action.execute(sc.variables, output_events)

Flat Statecharts: Simulation Algorithm (1)

1 simulate(sc: Statechart) {

2 input_events = initialize queue()
3 output_events = initialize_ queue()
4 timers = initialize_set()

5 curr_state = sc.initial_state

6 for (var in sc.variables) {

7 var.value = var.initial value

8 }

9 while (not finished()) {
1 curr_event = input_events.get()

enabled_transitions = find_enabled_transitions(curr_state, curr_event, sc.variables)

chosen_transition = choose_one_transition(enabled_transition)
cancel_timers(curr_state, timers)

curr_state = chosen_transition.target
chosen_transition.action.execute(sc.variables, output_events)
start_timers(curr_state, timers)

I
W M= ®

I
v B

J O

Flat Statecharts: Simulation Algorithm (2)

simulate(sc: Statechart) {
input_events = initialize_queue()
output_events = initialize queue()

timers

curr_state

initialize_set()
sc.initial_state

for (var in sc.variables) {
var.value = var.initial_value

}

while (not finished()) {
curr_event = input_events.get()
while (not quiescent()) {

enabled_transitions = find_enabled_transitions(curr_state, curr_event, sc.variables)
chosen_transition = choose_one_transition(enabled_transition)
cancel_timers(curr_state, timers)

curr_state = chosen_transition.target

chosen_transition.action.execute(sc.variables, output_events)
start_timers(curr_state, timers)

Flat Statecharts: Simulation Algorithm (3)

1 simulate(sc: Statechart) {

p) input_events = initialize_queue()

3 output_events = initialize_queue()

4 timers = initialize_set()

5 curr_state = sc.initial_state

6 for (var in sc.variables) {

7 var.value = var.initial_value

8 }

S while (not finished()) {
16 curr_event = input_events.get()
11 enabled_transitions = find_enabled_transitions(curr_state, curr_event, sc.variables)
12 while (not quiescent()) {
13 chosen_transition = choose_one_transition(enabled_transition)
14 cancel_timers(curr_state, timers)
15 curr_state = chosen_transition.target
16 chosen_transition.action.execute(sc.variables, output_events)
17 start_timers(curr_state, timers)
18 enabled_transitions = find_enabled_transitions(curr_state, sc.variables)
19 }
20 }

21 }

Testing Statecharts

Testing Statecharts

Generator System Under Study =+ Acceptor

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.

Testing Statecharts

k [low_fuel_detected()] /
rmoving N ~low_ fuel

key_up /

“move_up

low_fuel
[fuel_ok()]

[low_fuel_detected()] / —| 7> Acce pto r

~low_fuel

key_down /
~move_down

Generator

after(3s)

key down / key_enter /
_ ~move_down A shoot

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.

Testing Statecharts

Phasel

k [low_fuel_detected()] /
rmoving N ~low_ fuel

key_up /

“move_up

after(1) / ~shoot

low_fuel
[fuel_ok()]

[low_fuel_detected()] / —| 7> Acce pto r

~low_fuel

key_down /
~move_down

-
v

Phase2

after(3s)

key down / key_enter /
_ ~move_down A shoot

after(4) / ~key_up

|

Phase3

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.

Testing Statecharts

o

[IN(moving)]

Phasel

i

[(Buirow)NT 30u]

[fuel_ok()]

k - , [lov_fuel_detected()]
moving ~low_fuel

after(1) / ~shoot Phase?2 Y

l P key_down / low_fuel 8

\ “~mave_down shoot =

[low_fuel_detected()] / _7>

~low_fuel

Phase2 after(3s) _
_ Phase3 | _

key_down / key_enter /(" shooting g

\ ~move_down A " shoot E‘D\

B

after(4) / ~key_up move_up

|

pass

Phase3

fail

20

Zeigler BP. Theory of modelling and simulation. New York: Wiley-Interscience, 1976.

Mamadou K. Traoré, Alexandre Muzy, Capturing the dual relationship between simulation models and their context, Simulation Modelling Practice and
Theory, Volume 14, Issue 2, February 2006, Pages 126-142.

\b, sﬁ

Virtual Time

itemis © 2010-2019 - all rights reserved - 155

Test generation for various platforms

Executable in YAKINDU Statechart Tools

SCTUnit (beta)

X-unit testing framework for YAKINDU Statechart Tools

Test-driven development of Statechart models

Finished after 0,013 seconds

Runs: 1/1 B Errors: 0 B Failures: 0

-

v fi org.yakindu.sct.LightSwitchTest [Runner: JUnit 4] (0,001 s)
ge initialStatelsOff (0,001 s)

testclass LightSwitchTest for statechart Light Switch{
@Test
operation initialStateIsOff(){
enter
assert active(Light Switch.main_region.Off)

}
¥

Testclass

testclass someTestclass for statechart Light Switch {

Y Testclass
testclass -For statechart Light Switch {
}

* Has a unique name

* Has a unique name

e Has a reference to a statechart

Lightj'witch

interface:

operation
opl(paraml :
integer):void

operation
guardOp():boolean

in event operate

in event toFinal

Testclass

testclass (someTestclass) for statechart @ {

main region

after 30s

.

Off

entry/ &
op1(5)

guardOp == false]

On

L e @ —

tollal

operate

* Has a unique name
* Has a reference to a statechart

* Contains one or more operation

Lightj'witch

interface:

operation
opl(paraml :
integer):void

operation
guardOp():boolean

in event operate

in event toFinal

Testclass

testclass (someTestclass) for statechart @ {

main region

after 30s

.

Off

entry/ &
op1(5)

guardOp == false]

On |

L e @ —

tollal

operate

Testsuite

testsuite SomeTestSuite {
someTestclass

}

Testsuite

testsuite (SomeTestSuite {
someTestc

0 Testsuite

testsui
someTestcC

TestSuite {

* Has a unique name

e A testsuite contains at least one reference to a testclass

0 Operation

testclass someTestclass for statechart Light Switch {
@Test
operation test() : void{
enter
}

0 Operation

testclass someTestclass for statechart Light Switch {

operation test() : void{
enter
}

* May have @Test or @Run annotation

0 Operation

testclass someTestclass for statechart Light Switch {

o: void{

enter
}

* May have @Test or @Run annotation

* Has a unique name

0 Operation

testclass someTestclass for statechart Light Switch {

enter
}

* May have @Test or @Run annotation
* Has a unique name

* May have 0..n parameters

0 Operation

testclass someTestclass for statechart Light Switch {

?@t.
} -

May have @Test or @Run annotation

Has a unique name

May have 0..n parameters

Has a return type (standard is void)

0 Operation

testclass someTestclass for statechart Light Switch {

?@t.
} -

May have @Test or @Run annotation
Has a unique name

May have 0..n parameters

Has a return type (standard is void)

Contains 0..n statements

0 Expressions

// entering / exiting the statechart

enter, exit
// raising an event

raise event : value

// proceeding time or cycles
proceed ” cycle
proceed 200 ms

// asserting an expression, expression must evaluate to boolean

assert expression
// is a state active

active(someStatechart.someRegion.someState)

b Mocking Statements

SCTUnit allows to
* mock operations defined in the statechart model

* verify that an operation was called with certain values

// mocking the return value of an operation
mock mockOperation returns (20)
mock mockOperation(5) returns (30)

// verifying the call of an operation
assert called verifyOperation
assert called verifyOperation with (5, 10)

Control Structures

// if expression // while expression

if (x==5) { while (x==5) {
doSomething() doSomething()

} else {)

doSomethingelse()

Test-Driven Development

* Software development process, where software is developed driven by
tests

e Test-first-approach

e 3 steps you do repeatedly:
* writing a test

* implementing the logic .
. Writing test
e refactoring /v \

Refactoring

Test failed

NSt Implementin
succeeded P g
—

Exercise 3

esting Models

Exercise 3 — Unit testing Statecharts T (o

__TC: Statecharts
j (iTest ,}-

=8
7 JUnit 33 = 8
®. TrafficLightCtrl.sct 53 g D)/—[False]—

» *_ Statechart TrafficLightCtrl ¢ ¢ o L1 EE S
techart TrafficLightCtr TratficLightTests
> 5 4)
main —| Runs: B Errors: B Failures: _
v E’ETrafficLightTests Failu
{ raise displayRed ¢l switehTratficLightOn
I =t | E s‘mtc hLightFremRedToGreen -
1= 1 dEllightCyeles T
e gl il
after redPeriod s
E / raise displayGreer
Green
< Coverage 52 =R K Sl
Model Element Covera ge
= S ¥| |Statechart TrafficLightCtrl | B0 (6)
= 7 T ¥ Region main .50 % (6)
raise displayyellow | e —
¥ 5 State Red 100%(2)
—» Red -> Green (after 100 % (1)
¥ § State Green R P —
after yellowPeriod s —» Green -> Yellow | ai %
[raise displayRed N -
V|8 |State Yellow U T—
— Yell_ow == Red (aftel %

e Create a test that checks the following requirements:
e R3: at system start-up, the red light is on
e R4: cycles through red on, green on, and yellow on
* R5:red is on for 60s, green is on for 55s, yellow is on for 5s

| :DefineTestCases

Exercise 3 — Solution

) @D

package trafficlight.test
t False—
testclass TrafficlightTests for statechart TrafficlightCtrl { :] S ase
@Test operation switchTrafficLightOn () {

// given the traffic light is inactive

assert lis active

/7 when

enter

// then traffic light is off which means no color was switched on
assert displayRed

assert !displayGreen

assert !displayYellow // given
1 switchLightFromYellowToRed

@Test operation lightCycles () {

var i : integer = 1@

@Test operation switchLightFromRedToGreen () {
while (i > 8) {

/7 given i=i-1
switchTrafficLightOn
£/ when //when
proceed Gés proceed G52 s
7/ then [/ then
assert displayGreen assert displayGreen
b y
/ fwhen
proceed 55 s
// then

@Test operation switchLightFromGreenToYellow () {
assert displayYellow

// given -
switchLightFromRedToGreen {/when
// when proceed 5 s
proceed 55s f/ then
{7 then assert displayRed
assert displayYellow 1

b b

@Test operation switchLightFromYellowToRed () {

// given
switchLightFromGreenToYellow
// when

proceed Ss

// then

assert displayRed

Hierarchy

Entry/Exit Actions

A state can declare entry and exit actions.

* An entry action is executed whenever a state is entered (made
active).

An exit action is executed whenever a state is exited (made inactive)

Same expressiveness as transition actions:

/ red = true

N

/ ~displayRed

N after(5) /
Red red = true
after(54) /
yello;v = true

after(1) /
after(60) / ~displayGreen yellow = false _

after(5) / Prep_Y | .oy ™" | Prep_B

~displayRed

— yellow = true
[counter == 3] /

Green green = true; yellow = false;

red = false; counter = 0

after(55) / ~displayYellow Green

after(55) / green = false ; yellow = true
Yellow [—
Yellow

Fhi

Entry/Exit Actions

A state can declare entry and exit actions.

* An entry action is executed whenever a state is entered (made
active).

An exit action is executed whenever a state is exited (made inactive)

Same expressiveness as transition actions:

Red
entry / ~displayRed

/ red = true

N

after(5) /
Red red = true

after(54) /
yellow = true

after(1) /
after(60) yellow = false _
after(5) Prep_Y a&cec;L(l;;e/r +=1 Prep_B
— yellow = true
Green [counter == 3]/

green = true; yellow = false;
red = false; counter = 0

entry / ~displayGreen

Green

after(55)

after(55) / green = false ; yellow = true
Yellow

entry / ~displayYellow

Yellow

Fhi

Entry/Exit Actions

A state can declare entry and exit actions.

* An entry action is executed whenever a state is entered (made
active).

An exit action is executed whenever a state is exited (made inactive)

Same expressiveness as transition actions:

Red = after(5)
Red entry / red = true
entry / ~displayRed
after(54)
¥ after(1)
after(60) Prep Y counter += 1_
after(5) entry / yellow_: true after(1) Pre p_B
exit / yellow = false /=€
|
Green [counter == 3] /
entry / ~displayGreen red = false; counter = 0
¥
Green
after(55) entry / green = true

exit / green = false

Yellow afteiws)

entry / yellow = true
exit / yellow = false

Transitions

-

* Model the dynamics of the system:

Transitions

-

* Model the dynamics of the system:

o if

Transitions

A ‘ e

* Model the dynamics of the system:

o if

e the system is in state A

Transitions

event(params)

A

* Model the dynamics of the system:

o if
e the system is in state A
e and event is processed

Transitions

event(params) [guard]

A

* Model the dynamics of the system:
o if
e the system is in state A
e and event is processed
* and guard evaluates to true

Transitions

event(params) [guard]

A

* Model the dynamics of the system:
o if
e the system is in state A
* and event is processed
* and guard evaluates to true
* then

Transitions

event(params) [guard]

A

* Model the dynamics of the system:
o if
e the system is in state A
e and event is processed
* and guard evaluates to true
* then
1. the exit actions of state A are evaluated

Transitions

event(params) [guard]

A

* Model the dynamics of the system:

o if
e the system is in state A
* and event is processed
* and guard evaluates to true

* then
1. the exit actions of state A are evaluated
2. and output_action is evaluated

Transitions

event(params) [guard] / output_action(params)

A

* Model the dynamics of the system:

o if
e the system is in state A
* and event is processed
* and guard evaluates to true

* then
1. the exit actions of state A are evaluated
2. and output_action is evaluated
3. and the enter actions of state B are evaluated

Transitions

A event(params) [guard] / output_action(params)

* Model the dynamics of the system:

o if
e the system is in state A
e and event is processed
* and guard evaluates to true

* then
1. the exit actions of state A are evaluated
2. and output_action is evaluated
3. and the enter actions of state B are evaluated
4. the new active state is B

Entry/Exit Actions: Simulation Algorithm

1 simulate(sc: Statechart) {

2 input_events = initialize queue()

E output_events = initialize queue()

4 timers = initialize set()

5 curr_state = sc.initial_state

6 for (var in sc.variables) {

7 var.value = var.initial value

8 ¥

9 while (not finished()) {
16 curr_event = input_events.get()
11 enabled transitions = find enabled transitions(curr_state, curr_event, sc.variables)
12 while (not quiescent()) {
13 chosen_transition = choose_one_ transition(enabled transition)
14 cancel timers(curr state, timers)

5 execute _exit actions(curr_state)

6 curr_state = chosen_transition.target
17 chosen transition.action.execute(sc.variables, output events)
18 execute enter_ actions(curr_state)
19 start_timers(curr_state, timers)
20 enabled transitions = find_enabled transitions(curr_state, sc.variables)
21 1
22 I
23}

Hierarchy

e Statechart states can be hierarchically composed
* Each hierarchical state has exactly one initial state

* An active hierarchical state has exactly one active child (until leaf)

Hierarchy

» Statechart states can be hierarchically composed
e Each hierarchical state has exactly one initial state

* An active hierarchical state has exactly one active child (until leaf)

Semantics/Meaning?

Hierarchy

e Statechart states can be hierarchically composed
* Each hierarchical state has exactly one initial state

* An active hierarchical state has exactly one active child (until leaf)

Semantics/Meaning?

FLATTEN

Hiearchy: Modified Example

Hiearchy: Modified Example

Semantics/Meaning?

Hiearchy: Modified Example

Semantics/Meaning?

FLATTEN

Hiearchy: Modified Example

Semantics/Meaning?

(unwanted) non-determinism!
f\

FLATTEN

Hiearchy: Modified Example

Statemate, Yakindu, ...

~
S
s
~
~,
~

-
-
-
-
-
-
-
-
-
-
P
-
-

g
-
- - v
-
-
-~
-
-
-

-
Pt
P
-~
-
-
-
-
-
PS

P
P
-
-
-
-

-
d"
-
-
-
\ -
-
[P

(unwanted) non-determinism!

Hiearchy: Modified Example

Statemate, Yakindu, ...

Hiearchy: Modified Example

Statemate, Yakindu, ...

\b’ Composite States

* Hierarchical states are an ideal mechanism for hiding complexity
e Parent states can implement common behavior for its substates
* Hierachical event processing reduces the number of transitions

e Refactoring support: group state into composite

1 : 2 .
without composite with composite

heating

T | m—wm—? =
2

| open_doar i baking | open_doaor

' =
Switch door_open . . 1
swibch door_open
1 switch
T swikch

toasting

toasting

apen_door

Hierarchy: Initialization

e Concept of effective target state

Recursive: the effective target
state of a composite state is its
initial state

e Effective target state of initial
transition is Y/X/A

* |nitialization:

1.
2.
3.

Enter Y, execute enter action
Enter X, execute enter action
Enter A, execute enter action

Hierarchy: Transitions

Hierarchy: Transitions

(

N

Z‘\

o

e
X

)
(2)-
N

Y)

 Assume Z/W/C is active and e is
processed.

Hierarchy: Transitions

(

N

Z‘\

o

e
X

)
(2)-
N

Y)

 Assume Z/W/C is active and e is
processed.

e Semantics:

Hierarchy: Transitions

(K z) * Assume Z/W/Cis active and e is
Y) processed.

* Semantics:
1. Find LCA, collect states to leave

e
X

)
(2)-
N

L~

Hierarchy: Transitions

(K z) * Assume Z/W/Cis active and e is
Y) processed.
* Semantics:
1. Find LCA, collect states to leave
2. Leave states up the hierarchy

e
X

)
(2)-
N

L~

Hierarchy: Transitions

(K z) * Assume Z/W/Cis active and e is
Y) processed.
* Semantics:
1. Find LCA, collect states to leave
2. Leave states up the hierarchy

e
X

)
(2)-
N

L~

Hierarchy: Transitions

e Assume Z/W/C is active and e is
processed.

* Semantics:
1. Find LCA, collect states to leave
2. Leave states up the hierarchy

Hierarchy: Transitions

 Assume Z/W/C is active and e is
processed.

* Semantics:
1. Find LCA, collect states to leave
2. Leave states up the hierarchy
3. Execute action act

Hierarchy: Transitions

 Assume Z/W/C is active and e is
processed.
* Semantics:
1. Find LCA, collect states to leave
2. Leave states up the hierarchy
3. Execute action act
4. Find effective target state set,
enter states down the hierarchy

Hierarchy: Transitions

g * Assume Z/W/Cis active and e is
kr‘/Y‘ processeo{ /
‘ * Semantics:
X 1. Find LCA, collect states to leave
@ i 2. Leave states up the hierarchy
B! 3. Execute action act
@\.\ 4. Find effective target state set,
) enter states down the hierarchy

Hierarchy: Transitions

e Assume Z/W/C is active and e is
processed.
* Semantics:
1. Find LCA, collect states to leave
2. Leave states up the hierarchy
3. Execute action act
4. Find effective target state set,
enter states down the hierarchy

Hierarchy: Transitions

e Assume Z/W/C is active and e is
processed.
* Semantics:
1. Find LCA, collect states to leave
2. Leave states up the hierarchy
3. Execute action act
4. Find effective target state set,
enter states down the hierarchy

Hierarchy: Transitions

 Assume Z/W/C is active and e is
processed.
* Semantics:
1. Find LCA, collect states to leave
2. Leave states up the hierarchy
3. Execute action act
4. Find effective target state set,
enter states down the hierarchy

Effective target states:

40

RECURSIVE!

Exercise 5

Model an interruptible traffic
light

Exercise 5 - Requirements o (Gatmerr
M:Statecharts :ModelsT_m

main :ReviseSystem
®
7 i Verify Sysl
ra;s

d %
%.display%d

e S el
| /@f

Green / ‘
entry / raise TrafficLight.displayGreen 0

entry /

after greenPeriod s|
after yellowPeriod s

Yellow
entry / raise TrafficLight.displayYellow

R7a: police can interrupt autonomous operation .

R7b: Autonomous opreration can be interrupted during any pahse indicated by constant
red, yellow and green lights.

R7c: In interruptetd mode the yellow light blinks with a constant frequency of 1 Hz. (on -
> 0.5s, off 0.5s).

R8a: Police can resume to regular autonomous operation.

R8b: when regular operation is resumed the traffic light restarts with red (R) light on.

Exercise 5: Solution o (Catherke

M:Statecharts @g@
R7a: police can interrupt autonomous operation . ‘ReviseSystem
R7b: Autonomous opreration can be interrupted during any pahse indi;(zﬁlcjo—nffiﬁ’fﬂI
red, yellow and green lights. ——

R7c: In interruptetd mode the yellow light blinks with a constant frequency of 1 Hz. (on ->
0.5s, off 0.5s).

R8a: Police can resume to regular autonomous operation.

R8b: when regular operation is resumed the traffic light restarts with red (R) light on.

4 normal

N

4 interrupted

police_interrupt

police_interrupt

Exercise 5: Solution o (Catherke

M:Statecharts @5@
R7a: police can interrupt autonomous operation . ‘ReviseSystem
R7b: Autonomous opreration can be interrupted during any pahse ind;J—yléo—n;@
red, yellow and green lights. ——

R7c: In interruptetd mode the yellow light blinks with a constant frequency of 1 Hz. (on -
> 0.5s, off 0.5s).

R8a: Police can resume to regular autonomous operation.

R8b: when regular operation is resumed the traffic light restarts with red (R) light on.

4 normal

L ’
/ displayRed

interrupted

ﬂ/

after(60) / displayGreen
police_interrupt

after(5) / >
displayRed

Green

police_interrupt

after(55) / displayYellow

Yellow [—

-
o

Exercise 5: Solution o (Catherke

M:Statecharts @5@
R7a: police can interrupt autonomous operation . ‘ReviseSystem
R7b: Autonomous opreration can be interrupted during any pahse ind;J—yléo—n;@
red, yellow and green lights. ——

R7c: In interruptetd mode the yellow light blinks with a constant frequency of 1 Hz. (on -
> 0.5s, off 0.5s).

R8a: Police can resume to regular autonomous operation.

R8b: when regular operation is resumed the traffic light restarts with red (R) light on.

4 normal

L ’
/ displayRed

4 interrupted

/ displayYellow

after(60) / displayGreen Yel |0W]
after(S) / police_interrupﬁ

displayRed after(1) /

after(1) / displayYellow
displayNone

Green l

police_interrupt
after(55) / displayYellow BIaCk

N /

e/

Yellow [—

main

Exercise 5 - Solution

normal

'

)
normal interrupted

police_interrupt blinking

‘ !

Yellow

Red

entry / raise TrafficLight.displayRed

"after redPeriod sl

after greenPeriod i

Green
entry / raise...

Yellow
entry / raise TrafficLight.displayYellow

entry / raise TrafficLight.displayYellow

afterlSOO ms afterTSOO ms

Black
entry / raise TrafficLight.displayNone

police_interrupt

after yellowPeriod $

modeling approach

R6: police can interrupt autonomous operation.

R6a: Autonomous opreration can be interrupted during any
pahse indicated by constant red, yellow and green lights.

R7: In interruptetd mode the yellow light blinks with a
constant frequency of 1 Hz. (on -> 0.5s, off 0.5s).
R8: Police can resume to regular autonomous operation.

R8a: When regular operation is resumed the traffic light
rectarte with red (R) licht on

An new incoming event police_interrupt triggers a transition
to a new state interrupted.

The states Red, Green, and Yellow are grouped within a new
composite state normal. This state is the source state of the
transition to state interrupted and thus also applies to all
substates.

State interrupted is a composite state with two

substates Yellow and Black. These switch the yellow light on
and off. Timed transitions between these states ensure
correct timing for blinking.

A transition triggered by police_interrupt leads from
state interrupted to state normal.

When activating state normal its substate Red is activated by
defaiilt

History

History @ shallow history @ deep history

e 2

History @ shallow history @ deep history

- 2
* Assume Z/Y/X/B is active, and m is

G 9
k@\ processed
N

History @ shallow history @ deep history

- 2
* Assume Z/Y/X/B is active, and m is

t 9
k@\ processed
k ’\ e Effective target state: E

History @ shallow history @ deep history

- 2
* Assume Z/Y/X/B is active, and m is

t 9
k@\ processed
k ’\ e Effective target state: £

@ ’/ W * If h_sis processed
e/act

History @ shallow history @ deep history

- 2
* Assume Z/Y/X/B is active, and m is

t 9
k@\ processed
k ’\ e Effective target state: £

@ [W)« Ifh_sis processed
c/ad * Effective target state: Z/Y/D

History @ shallow history @ deep history

- 2
* Assume Z/Y/X/B is active, and m is

t 9
k@\ processed
k k e Effective target state: E

@ [W)| e« Ifh_sis processed
c/od e Effective target state: Z/Y/D

J f * If h_dis processed

History @ shallow history @ deep history

- 2
* Assume Z/Y/X/B is active, and m is

t 9
k@\ processed
k k e Effective target state: E

@ [W)| e« Ifh_sis processed
c/od e Effective target state: Z/Y/D
°| : * If h_dis processed

@i | B |||, * Effective target state: Z/Y/X/B
S\

History @ shallow history @ deep history

- 2
* Assume Z/Y/X/B is active, and m is

C 9
k@\ processed
k ’\ e Effective target state: E

@ [W)| e« Ifh_sis processed
c/od e Effective target state: Z/Y/D
°| : * If h_dis processed

@i | B |||, * Effective target state: Z/Y/X/B
S\

Effective target states:

| (a0 (COml)

RECURSIVE!

Exercise 6

Model an interruptible traffic
ight that restores its state

Exercise 6: Requirements

* R8b: when regular operation is resumed the traffic light restarts
with the last active light color red (R), green (G), or yellow (Y) on.

main

normal | interrupted

normaal police_interrupt blinking

® ®
L Yo !

Yello
entry / raise TrafficLight.displayRed i

4 % entry / raise TrafficLight.displayYellow

4

Green } /0/ o

L entry / raise TrafficLight.displayNone

after greenPeriod police_interrupt
after yellowPeriod $

" after redPeriod sl
afterlSOO ms afterTSOO ms

entry / raise...

Yellow
entry / raise TrafficLight.displayYellow

:ReviseSystem

Q—-—| :GatheLRe

M:Statecharts

Verify Sysl

Exercise 6: Solution o (Catherke
M:Statecharts :ModelsT_m

:ReviseSystem
Verify Sysl

—_——

* R8b: when regular operation is resumed the traffic light restarts
with the last active light color red (R), green (G), or yellow (Y) on.

Exercise 6: Solution

R8b: when regular operation is resumed the traffic light restarts
with the last active light color red (R), green (G), or yellow (Y) on.

-

o

ot
/ ~displayRed

after(60) / ~displayGreen

after(55) / ~displayYellow

normal ™\

police_interrupt

-

after(5) /
~displayRed

Green

police_interrupt

o}
®/

-

/ ~displayYellow

interru ptecﬁ

Yellow |<

after(1) /
after(1) / ~displayYellow
~displayNone

:ReviseSystem

.—-—-l :Gatheite

M:Statecharts

Verify Sysl

g

Exercise /

Model an interruptible traffic

Nt that restores its state and
can be switched on/off

Exercise /: Requirements o (Catheree

M:Statecharts :ModelS‘E
. . . :ReviseSystem
Add another hierarchy level that supports switching on and off the VT
coomplete traffic light. Go into detail with shallow and deep histories.

e R9: The traffic light can be switched on and off.

* RO9a: The traffic light is initially off.

* R9b: If the traffic light is off nocht light is on.

* R9c: After switching off and on again the traffic light must switch on the
previously activated light.

®
mll

)
norma
normal ;O police_interrupt _ blinking
\ ;

v

e O
entry / raise TrafficLight.displayRed

Yellow]
< / entry / raise TrafficLight.displayYellow

"after redPeriod sl O -
afterlSOO ms afterTSOO ms
)

interrupted

Green

entry / raise... @ Black]
= L /Oentry / raise TrafficLight.displayNone

after greenPeriod sl police_interrupt

after yellowPeriod $ O
) -
Yellow

entry / raise TrafficLight.displayYellow

4

Exercise 7: Solution

on)

4 4 . normal

L / ~displayRed
N
4 interrupted

/ ~displayYellow

after(60) / ~displayGreen o Yel IOW -

after(5) / pollce_lnterrup; toggle / "displayNone:

~a

cplayiied after(1) / ’\d?sfgla;&)el/low B toggle Oﬂ:
Green ~displayNone N
police_interrupt
after(55) / ~displayYellow Black
- J

Yellow —

o J

toggle_history

.

Exercise 7: Alternative Solution

-~

®
/ ~displayRed

RN

Green

-

after(60) / ~displayGreen

after(55) / ~displayYellow

Yellow —

normal

police_interrupt

on)

4 interrupted

/ ~displayYellow

Yellow |<

after(5) /
~displayRed

v

police_interrupt

toggle / "displayNone‘

after(1) /
after(1) ; “displayYellow

y o

toggle

~displayNone

@

Black

toggle_history

NS

Off

Orthogonality

Orthogonality

Orthogonality

Semantics/Meaning?

main

Lf X Y

Orthogonality

Semantics/Meaning?

main

-

Y

AN

"

CARTESIAN PRODUCT >

Orthogonality

Semantics/Meaning?

main

YO

AN

CARTESIAN PRODUCT >

Effective target states:

] @8 (=

0 G

RECURSIVE!

Parallel (In)Dependence

main

&
5]

inp : inp

)
)

Parallel (In)Dependence

main

L/

o

inp / ~outp,

inp / ~outp,

/

inp / Aoutpl

{outpl, outp2}

Parallel (In)Dependence

MyClass | < <pehaviour>> tOtaIState
counter:int | - - -,
1 : :MyClass
' . counter=0 = ,
¥ main : counter| 0| :
(&AL

inp / counter += 2 inp/ counter *=3

A X

:MyClass :MyClass

counter| 2 counter| 0

inp / counter += 2 inp / counter *= 3

g -
inp / counter *=3 inp / counter += 2

:MyClass :MyClass

counter| 6 counter| 0

Orthogonality: Communication

main

L/ X v\ ¢ Components can communicate:
' * raising local events:
! h[INSTATE(X/A)] ,
A i C NM<<event name>>
I n INSTATE macro
|l s INSTATE(<<state location>>)
¥ ! Y

Input Segment: nmnn

Simulation Algorithm

1 simulate(sc: Statechart) {

2 input_events = initialize queue()

3 output_events = initialize queue()

il local events = initialize queue()

5 timers = initialize set()

) curr_state = get effective target states(sc.initial state)

7 for (var in sc.variables) {

8 var.value = var.initial value

9 ¥

10 while (not finished()) {

11 curr_event = input_events.get()

12 for (region in sc.orthogonal regions) {

13 enabled transitions[region] = find _enabled transitions(curr_state, curr_event, sc.variables)
14 1

15 while (not quiescent()) {

16 chosen_region = choose_one_region(sc.orthogonal regions)

17 chosen_transition = choose _one transition(enabled transition[chosen _region])
18 states to exit = get states to exit(get lca(curr_state, chosen_transition))
19 for (state to exit in states to exit) {

20 cancel timers(state to exit, timers)

21 execute exit actions(state to exit)

22 remove state from curr_state(state to exit)

23 }

24 chosen_transition.action.execute(sc.variables, output_events, local events)
25 states to enter = get effective target states(chosen_transition)

26 for (state to _enter in states to _enter) {

27 add state to curr_state(state to_enter)

28 execute enter actions(state_ to_enter)

start_timers(state to _enter, timers)

}

enabled transitions = find enabled transitions(curr_state, sc.variables, local events)

(VR VN R VE R YRR U W
S W A ¥

Conditional Transitions

[a > 2]

e.

[a <= 2]

e getEffectiveTargetStates(): select one true-branch
e Always an “else” branch required!

e Equivalent (in this case) to two transitions:
e A—ela>2]->C
e A—ela<=2]->B

Exercise &

Add a timer to the traffic light

TrafficLight

Exercise 8: Requirements

- timer: int

In this exercise a timer must be modeled. It introduces using orthogonal

regions.

Q—-—| :GatherRe
M:Statecharts _
(:ModelSys!

:ReviseSystem
Verify Sysl

* R10a: A timer displays the remaining time while the light is red or green

* R10b: This timer decreases and displays its value every second.

* R10c: The colour of the timer reflects the colour of the traffic light.

main

off |
toggle
2 ggle

main

i

exit / raise TrafficLight.displayNone

l police_interrupt
normal l
normal O interrupted

Red ‘ =
‘—. blinking
entry / raise TrafficLight.displayRed -

trafficlight

(3 o

after redPeriod s *
Yellow
\ entry / raise TrafficLight.displayYellow
Green @

entry / raise TrafficLight.displayGreen
f afterLOOms afterTSOOms

after greenPeriod sl Black

after yellowPeriod s entry / raise TrafficLight.displayNone

) ~

"~ hist ®=

Yellow

entry / raise TrafficLight.displayYellow \mmpvm— "
police_interrupt I

Exercise 8: Solution TrafficLight

:ReviseSystem
* R10a: A timer displays the remaining time while the light is red or gree‘(jﬂ_"E,ﬁ‘ﬁI

- timer: int

R10b: This timer decreases and displays its value every second.
R10c: The colour of the timer reflects the colour of the traffic light.

@®—| :GatherRe
M:Statecharts r
(:ModelSys!

—_——

Exercise 8: Solution

TrafficLight

- timer: int

M:Statecharts

:ReviseSystem

.—-—-l :Gatheite

e R10a: A timer displays the remaining time while the light is red or gree Verify Sys!
* R10b: This timer decreases and displays its value every second. m—
* R10c: The colour of the timer reflects the colour of the traffic light.

trafficlight | timer

-

after(60) /
~displayGreen;
setTimerValue(55);
~resetTimer

after(55) /
~displayYellow;
~disableTimer

o
®—

/ ~displayRed;
setTimerValue(60);
~resetTimer;

normal

police_interrupt /
~disableTimer

after(5) /
~enableTimer;
~displayRed;
setTimerValue(60);
~resetTimer

¥

-

/ ~displayYellow

Yellow (<

after(1) /
after(1) / ~displayBlack
~displayNone

interrupted

police_interrupt /
~enableTimer

-

Disabled [©

enableTimer

disableTimer /
~updateTimerValue(-1)

resetTimer /
~updateTimerValue(-1)

S
s

running \
\ IN(trafficlight/normal/Red) /
~updateTimerColor("red");
\ ~updateTimerValue(getTimerValue()) Red

DecidingCoIorJ

IN(trafficlight/normal/Green) /
~updateTimerColor("green");
AupdateTimerValue(getTimerValue())

after(1) /
~decreaseTimerValue();
~updateTimerValue(getTimerValue())

~updateTimerValue(getTimerValue())

after(1) /
G reen decreaseTimerValue();
o

Solution 8

requirement

R10: a timer displays the remaining time while the light is red
or green

R10a: This timer decreases and displays its value every
second.

R10b: The colour of the timer reflects the colour of the traffic

- toggle
toggle
exit / raise TrafficLight.displayNone

normal | police_interrupt / raise disableTimer

|
normal
interrupted
T blinking

Red | .
entry / raise TrafficLight.displayRed; l
counter = redPeriod; |
| Yellow

raise resetTimer ‘__

1
trafficlight

after redPeriod s

counter = greenPeriod;
raise resetTimer

y Red
y -
P entry / raise Timer.updateTimerValue: counter
Ren after [500ms after [S00ms |
entry / raise TrafficLight.displayGreen; -
J

Black

after greenPeriod s

entry / raise TrafficLight.displayYellow

entry / raise TrafficLight.displayNone ‘

modelling approach

The timer is defined in a second region within state on.

An internal variable for the counter is introduced. Wehn
switching e traffic light phase the counter value is set to the
time period of the phase. Additionally the local

evemts resetTimer, enableTimer, and disableTimer are used
to synchronize traffic light phase switches with the timer.

When the timer is enabled it checks the active traffic light
phase state using active() function.

main
2
timer
disabled
\ enableTimer
disableTimer ‘
resetTimer
1

running 1

exit / raise Timer.updateTimerValue: Timer.OFF

2

else

| running
‘ / raise Timer.updateTimerColour: "Red”

after 1s/ counter -= 1

after yellowPeriod s /

4

raise enableTimer ‘

Yellow
entry / raise TrafficLight.displayYellow;
raise disableTimer

hist ®=

police_interrupt
/ raise enableTimer

o0
Green

entry / raise Timer.updateTimerValue: counter

[active (TrafficLightCtrl.main.main.trafficlight.normal.normal.Green)]

/ raise Timer.updateTimerColour: "Green" after 18/ counter -= 1

Code Generation

Code Generation

Code generators for C, C++, Java, Python, Swift, Typescript, SCXML

Plain-code approach by default
Very efficient code

Easy integration of custom generators

JavaScript

TS

Code Generation

* Various different approaches for implementing a state
machine (switch / case, state transition table, state
pattern)

 Which one is the best depends on
* Runtime requirements
e ROM and RAM memory
* Debug capabilities
e Clarity and maintainability

Switch / Case

 Each state corresponds to one case

public void stateMachine() {
while (true) {

* Each case executes state-specific

statements and state transitions

}

}

switch (activeState) {

case RED: {
activeState = State.RED_YELLOW;
break;

}

case RED_YELLOW: {
activeState = State.GREEN;
break;

}

case GREEN: {
activeState = State.YELLOW;
break;

}

case YELLOW: {
activeState = State.RED;
break;

}
}

State Transition Table

e Specifies the state machine purely declaratively.

 One of the dimensions indicates current states, while the
other indicates events.

enum columns {
SOURCE_STATE,
USER_UP, USER_DOWN, POSSENSOR_UPPER_POSITION, POSSENSOR_LOWER_POSITION,
TARGET_STATE

}s

#define ROWS 7
#define COLS 6
int state_table[ROWS][COLS] = {

e source, up, down, upper, lower, target */
INITIAL, false, false, false, false, IDLE },
IDLE, true, false, false, false, MOVING UP },
IDLE, false, true, false, false, MOVING DOWN 7},

MOVING_UP, false, true, false, false, IDLE },
MOVING_UP, false, false, true, false, IDLE },

P N Y T

State Pattern

e Object-oriented implementation, behavioural design
pattern

* Used by several frameworks like Spring Statemachine,
Boost MSM or Qt State Machine Framework

 Fach State becomes one class

{] A” Classes derive from a public class MovingUp extends AbstractState {

public MovingUp(StateMachine stateMachine) {

common interface) S

@Override
public void raiseUserDown() {
stateMachine.activateState(new Idle(stateMachine));

}

@Override
public void raisePosSensorUpperPosition() {
stateMachine.activateState(new Idle(stateMachine));

}

@Override
public String getName() {
return "Moving up";

}

Code Generation

SCT

Fast Memory easy to Easy to
efficient debug understand
Switch / Case + + @ @
State Transition
Table + © — —

State Pattern

i

")

& very simplified illustration

Code Generator Model

GeneratorModel for yakindu::java {
statechart exercise5 {

feature Outlet {
targetProject = "5 sctunit”
targetFolder = "src-gen"

libraryTargetFolder = "src

b Code Generator Model

GeneratorModel forcgakindu::java {

statechart exercise5 {

feature Outlet {
targetProject = "5 sctunit”
targetFolder = "src-gen"

libraryTargetFolder = "src

* Has a generator ID

b Code Generator Model

GeneratorModel forcgakindu::java {

Gtatechart exercise>Y(

feature Outlet {
targetProject = "5 sctunit”
targetFolder = "src-gen"

libraryTargetFolder = "src

* Has a generator D

* Has a generator entry

b Code Generator Model

GeneratorModel forcgakindu::java {

Gtatechart exercise>Y(

feature {
targetProject = "5 sctunit”
targetFolder = "src-gen"

libraryTargetFolder = "src

* Has a generator ID
* Has a generator entry

e Each generator entry contains 1..n feature-configurations

Code Generator Model

GeneratorModel forcgakindu::java {

Gtatechart exercise>Y(

feature {
targetProject = "5_SCFEEEEZ:>

targetFolIder = src-gen"

libraryTargetFolder = "src

Has a generator ID
Has a generator entry
Each generator entry contains 1..n feature-configurations

Each feature-configuration contains 1..n properties

Generated Code

., TrafficLightCtrl.sct TrafficLightCtriStatemachinejava 23

Sample

}

¥

}

J

Je

J

break;

case main_main_trafficlight interrupted blinking Yel Low:
exitSequence_main_main_trafficlight_interrupted_blinking_Yellow();
break;

case main_main_trafficlight_normal_normal_Red:
exitSequence _main_main_trafficlight normal normal_Red();
break;

case main_main_trafficlight normal_normal Yellow:
exitSequence_main_main_trafficlight_normal_normal_Yellow();
break;

case main_main_trafficlight_normal_normal_Green:
exitSequence_main_main_trafficlight normal _normal_Green(};
break;

default:
break;

¥

Default exit sequence for region blinking */
= private woid exitSequence_main_main_trafficlight_interrupted_blinking() {

switch (statevector[8]) {

case main_main_trafficlight_interrupted_blinking Black:
exitSequence_main_main_trafficlight_interrupted_blinking Black();
break;

case main_main_trafficlight interrupted blinking Yel Low:
exitSequence_main_main_trafficlight_interrupted_blinking_Yellow();
break;

default:
break;

¥

Default exit sequence for region normal */
= private woid exitSequence_main_main_trafficlight_normal_normal() {

switch (stateVector[®]) {

case main_main_trafficlight_normal_normal_Red:
exitSequence _main_main_trafficlight normal normal_Red();
break;

case main_main_trafficlight normal_normal Yellow:
exitSequence_main_main_trafficlight_normal_normal_Yellow();
break;

case main_main_trafficlight_normal_normal_Green:
exitSequence_main_main_trafficlight normal _normal_Green(};
break;

default:
break;

¥

Default exit sequence for region timer */
= private woid exitSequence_main_main_timer() {

N PR N P . L

Generated Code

Sample

Files

w [src-gen
w B traffic.light
v £ trafficlightctrl

[# ITrafficLightCtriStatemachine.java
[J] SynchronizedTrafficLightCtriStaternachingjar
[J] TrafficLightCtriStatemachinejava

[# IStatemachine.java

@ [Tirmerjava

[ITimerCallback java

[J] RuntimeService java

[J] TimerServicejava

*. TrafficLightCtrl.sct

}

J

TrafficLightCtriStatemachinejava 23

break;

case main_main_trafficlight interrupted blinking Yel Low:
exitSequence_main_main_trafficlight_interrupted_blinking_Yellow();
break;

case main_main_trafficlight_normal_normal_Red:
exitSequence _main_main_trafficlight normal normal_Red();
break;

case main_main_trafficlight normal_normal Yellow:
exitSequence_main_main_trafficlight_normal_normal_Yellow();
break;

case main_main_trafficlight_normal_normal_Green:
exitSequence_main_main_trafficlight normal _normal_Green(};
break;

default:
break;

¥

Default exit sequence for region blinking */

private woid exitSequence_main_main_trafficlight_interrupted_blinking() {

¥

Je

switch (statevector[8]) {

case main_main_trafficlight_interrupted_blinking Black:
exitSequence_main_main_trafficlight_interrupted_blinking Black();
break;

case main_main_trafficlight interrupted blinking Yel Low:
exitSequence_main_main_trafficlight_interrupted_blinking_Yellow();
break;

default:
break;

¥

Default exit sequence for region normal */

private woid exitSequence_main_main_trafficlight_normal_normal() {

}

J

switch (stateVector[®]) {

case main_main_trafficlight_normal_normal_Red:
exitSequence _main_main_trafficlight normal normal_Red();
break;

case main_main_trafficlight normal_normal Yellow:
exitSequence_main_main_trafficlight_normal_normal_Yellow();
break;

case main_main_trafficlight_normal_normal_Green:
exitSequence_main_main_trafficlight normal _normal_Green(};
break;

default:
break;

¥

Default exit sequence for region timer */

private woid exitSequence_main_main_timer() {

N PR N P . L

Generated Code

Sample

Files

w [src-gen
w B traffic.light
v £ trafficlightctrl

[# ITrafficLightCtriStatemachine.java
[J] SynchronizedTrafficLightCtriStaternachingjar
[J] TrafficLightCtriStatemachinejava

[# IStatemachine.java

@ [Tirmerjava

[ITimerCallback java

[J] RuntimeService java

[J] TimerServicejava

> 8 files
> 1311 lines of code
» 302 manual (Ul) code

., TrafficLightCtrl.sct TrafficLightCtriStatemachinejava 23

break;

case main_main_trafficlight interrupted blinking Yel Low:
exitSequence_main_main_trafficlight_interrupted_blinking_Yellow();
break;

case main_main_trafficlight_normal_normal_Red:
exitSequence _main_main_trafficlight normal normal_Red();
break;

case main_main_trafficlight normal_normal Yellow:
exitSequence_main_main_trafficlight_normal_normal_Yellow();
break;

case main_main_trafficlight_normal_normal_Green:
exitSequence_main_main_trafficlight normal _normal_Green(};
break;

default:
break;

h

}

/* Default exit sequence for region blinking */
private woid exitSequence_main_main_trafficlight_interrupted_blinking() {
switch (statevector[8]) {
case main_main_trafficlight_interrupted_blinking Black:
exitSequence_main_main_trafficlight_interrupted_blinking Black();
break;
case main_main_trafficlight interrupted blinking Yel Low:
exitSequence_main_main_trafficlight_interrupted_blinking_Yellow();
break;
default:
break;
h

}

/* Default exit sequence for region normal */
private woid exitSequence_main_main_trafficlight_normal_normal() {
switch (stateVector[®]) {
case main_main_trafficlight_normal_normal_Red:
exitSequence _main_main_trafficlight normal normal_Red();
break;
case main_main_trafficlight normal_normal Yellow:
exitSequence_main_main_trafficlight_normal_normal_Yellow();
break;
case main_main_trafficlight_normal_normal_Green:
exitSequence_main_main_trafficlight normal _normal_Green(};
break;
default:
break;
h

}

/* Default exit sequence for region timer */
private woid exitSequence_main_main_timer() {

N PR N P . L

protected void setupStatemachine() {

Interface Setu p code statemachine = new SynchronizedTrafficlLightCtrlStatemachine();

statemachine.setTimer(timer);

timer = new MyTimerService(10.0);

interface: statemachine.getSCITrafficlight().getlisteners().add(new ITrafficLightCtrlstatemachine.5CITrafficlightlistener() {
in event police_intermupt @override
in event toggle public void onDisplayYellowRaised() {
setlights(false, true, false);
interface TrafficLight: ¥
out event displayRed
out event displayGreen public void onDisplayRedRaised() {[J
out event displayyellow
out event displayNone public woid onDisplayMoneRaised() {[]
interface Timer: public wvoid onDisplayGreenRaised() {[]
out event updateTimerColour: string s

out event updateTimervalue: integer
statemachine.getSCITimer().getlisteners().add(new ITrafficLightCtrlStatemachine.SCITimerListener() {

internal:
event resetTimer @override
event disableTimer public void onUpdateTimerValueRaised(long value) {
event enableTimer crossing.getCounterVis().setCounterValue(value);
var counter: integer repaint();

@override
public void onUpdateTimerColourRaised(String value) {
crossing.getCountervis().setColor(value == "Red” ? Color.RED : Color.GREEN);
h
Bs

buttonPanel.getPoliceInterrupt()
.addActionListener(e -» statemachine.getSCInterface().raisePolice_interrupt());

buttonPanel. getSwitchOnOff()
.addActionListener(e -» statemachine.getSCInterface().raiseToggle()):

statemachine.init();

¥

private void setLights(boolean red, boolean yellow, boolean green) {
crossing.getTrafficlightvis().setRed(red);
crossing.getTrafficLlightVis().sety¥ellow(yellow);
crossing.getTrafficlightvis().setGreen(green);
repaint();

protected void setupStatemachine() {

Interface Setu p code statemachine = new SynchronizedTrafficlLightCtrlStatemachine();

statemachine.setTimer(timer);

timer = new MyTimerService(10.0);

interface: statemachine.getSCITrafficlight().getlisteners().add(new ITrafficLightCtrlstatemachine.5CITrafficlightlistener() {
in event police_intermupt @override
in event toggle public void onDisplayYellowRaised() {
setlights(false, true, false);
interface TrafficLight: ¥
out event displayRed
out event displayGreen public void onDisplayRedRaised() {[J
out event displayyellow
out event displayNone public woid onDisplayMoneRaised() {[]
interface Timer: public wvoid onDisplayGreenRaised() {[]
out event updateTimerColour: string s

out event updateTimervalue: integer
statemachine.getSCITimer().getlisteners().add(new ITrafficLightCtrlStatemachine.SCITimerListener() {

internal:
event resetTimer @override
event disableTimer public void onUpdateTimerValueRaised(long value) {
event enableTimer crossing.getCounterVis().setCounterValue(value);
var counter: integer repaint();
@override
public void onUpdateTimerColourRaised(String value) {
Generator crossing.getCountervis().setColor(value == "Red” ? Color.RED : Color.GREEN);
h
Bs

GeneratorModel for yakindu::java {
buttonPanel.getPoliceInterrupt()
.addActionListener(e -» statemachine.getSCInterface().raisePolice_interrupt());

statechart TrafficLightCtrl {

buttonPanel. getSwitchOnOff()

.addActionlListener(e -» statemachine.getSCInterface().raiseToggle H
feature Outlet { (B 0 ggle())

targetProject = "traffic_light_history” statemachine.init();
targetFolder = "src-gen” :

} private void setLights(boolean red, boolean yellow, boolean green) {
crossing.getTrafficlightvis().setRed(red);
. crossing.getTrafficlightvis().setYellow(yellow);
feature Namlng { crossing.getTrafficlightvis().setGreen(green);
basePackage = "traffic.light” repaint();

implementationsuffix ="" o d

feature GeneralFeatures {
RuntimeService = true
TimerService = true
InterfaceObserversupport = true

feature SynchronizedWrapper {
namePrefix = "Synchronized”
namesuffix = ""

Interface

TrafficLightCtrl ()
interface: Exce rpt
in event police_intermupt
in event toggle

interface TrafficLight:
out event displayRed
out event displayGreen
out event displayyellow
out event displayMone

interface Timer:
out event updateTimerColour: string
out event updateTimervalue: integer

internal:
event resetTimer
event disableTimer
event enableTimer
var counter: integer

Generator

GeneratorModel for yakindu::java {
statechart TrafficLightCtrl {

feature Outlet {

targetProject = "traffic_light_history”

targetFolder = "src-gen”

feature Naming {
basePackage = "traffic.light”
implementationsuffix =""

feature GeneralFeatures {
RuntimeService = true
TimerService = true
InterfaceObserversupport = true

feature SynchronizedWrapper {
namePrefix = "Synchronized”
namesuffix = ""

Setup Code

protected void setupStatemachine() {
statemachine = new SynchronizedTrafficlLightCtrlStatemachine();
timer = new MyTimerService(10.0);
statemachine.setTimer(timer);

statemachine.getSCITrafficLight().getlisteners().add(new ITrafficlightCtrlStatemachine.5CITrafficlightlistener() {

@override
public void onDisplayYellowRaised() {
setlights(false, true, false);

}

public void onDisplayRedRaised() {[]
public woid onDisplayMoneRaised() {[]

public wvoid onDisplayGreenRaised() {[]
I H

statemachine.getSCITimer().getlisteners().add(new ITrafficLightCtrlStatemachine.SCITimerListener() {

@0verride

public void onUpdateTimerValueRaised(long value) {
crossing.getCounterVis().setCounterValue(value);
repaint();

@override
public void onUpdateTimerColourRaised(String value) {
crossing.getCountervis().setColor(value == "Red” ? Color.RED : Color.GREEN);
h
Bs

buttonPanel.getPoliceInterrupt()
.addActionListener(e -» statemachine.getSCInterface().raisePolice_interrupt());

buttonPanel. getSwitchOnOff()
.addActionListener(e -» statemachine.getSCInterface().raiseToggle()):

statemachine.init();

¥

private void setLights(boolean red, boolean yellow, boolean green) {
crossing.getTrafficlightvis().setRed(red);
crossing.getTrafficLlightVis().sety¥ellow(yellow);
crossing.getTrafficlightvis().setGreen(green);
repaint();

Runner

protected woid run() {
statemachine.enter();
RuntimeService.getInstance().registerStatemachine(statemachine, 1@8a);

273

Deployed Application (Scaled Real-Time)

PRET

|) ONIOFF POLICE INTERRUPT { |

Deploying onto Hardware

Deploying onto Hardware

& 4

wesee ennes |
SAEd sha

Interface:

* pinMode(pin_nr, mode)

» digitalWrite(pin_nr, {0, 1})
» digitalRead(pin_nr): {0, 1}

Deploying onto Hardware

Generator

GeneratorModel for yakindu::c {
statechart TrafficLightCtrl {

feature Outlet {
targetProject = "traffic_light_arduine”
targetFolder = “srg-gen”
libraryTargetFolder = “src-gen”

}

feature FunctionInlining {
inlineReactions = true
inlineEntryActions = true
inlineExitActions = true
inlineEnterSequences = true
inlineExitSequences = true
inlineChoices = true
inlineEnterRegion = true
inlineExitRegion = true
inlineEntries = true

Deploying onto Hardware

Deployed Application

Runner

#define CYCLE PERIOD ({10}
static unsigned long cycle_count = 0L:
static unsigned long last_cycle _time = 0L;

vold loop() {

unsigned long current millies = millis(jr

read_pushbutton (spushbutton)

if { cycle_count == 0L || (current_millies >»>= last_cycle_time + CYCLE FERICD)) {
sc_timer service proceed({ztimer service, current millies - last_cycle_time);
synchronize (strafficLight);
trafficLightCtrl runCycle (strafficLight);
last _cycle_time = current _millies;
cycle count++;

Button Code

vold read pushbutton(pushbutton t *button) {

int pin_walue = digitalRead(button->pin);

if (pin_walue != button->debounce_state) |
button->last_debounce time = millis();

}
if ((millis{} - button->last_dsbounce_time) > button->debounce delay) {
if (pin_walus != button->state) |
button->state = pin_walus;
button-rcallkback{kbutton) ;
}
}

button->debounce_state = pin_ value;

Semantic Choices

Semantic Choices

enabled events: [inc_one, inc_two]

‘ Plant
f.P'iI""f)f':t":’.‘i‘.‘;_l) " : Process_ 2) -)
ti:tnc.one process : tarnclwo process
Jar=a+1; bi=b+1; | Ja:=a+2; b:=b+2;
_Hi -F-_F_P___ ___—_-_-,-"'—'\ : _H‘ -F-_‘_'_F___ ___—_---f-'—
(Id!e_l \ Wait_1 J ' | Tdle 2 Wait_2 }
L M : b
— ____——'-"'_'_ | —— ___———"'-'_F
to: end_process . tq: end_process
Controller .
ts: process” start_process(a,b)
4 T
Idle Wait
tg: end_process/a:=0; b:=);
b "y

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.

Big Step, Small Step

* A “big step” takes the system from one “quiescent state” to the next.

e A “small step” takes the system from one “snapshot” to the next
(execution of a set of enabled transitions).

* A “combo step” groups multiple small steps.

t1
| t
0 O0—=0—>@
{ Spt Sp1 SPn—2 : SPn—1 sp
Small Steps N~ =
Ty Tn—l Tn

Combo Steps —— - -~ _
Big Step T ~ — _

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.

Semantic Options

GC BIG STEP
GC SMALL STEP
GC CoOMBO STEP

GC STRONG SYNCHRONOUS VARIABLE]

[SUL'RCEJDL-S'HNM 10N OR'I'HUGUNALJ
Section 3.1

Small-Step Consistency
Section 3.2.2

NON-PREEMPTIVE

Enabledness Memo
Protacol — Section 3.4

Concurrency and

SYNTACTIC
INPUT EVENTS

BSML Semantics

GC WEAK SYNCHRONOUS VARIABLE]

R NTS
AS ENVIRONMENTAL

GC ASYNCHRONOUS VARIABLE]

RHS BI1G STEP
RHS COMBO STEP

RHS STRONG SYNCHRONOUS \’.«R[ml.r]

- Assignment Memory
Preemption Protocol — Section 3.5

Section 3.2.3

(Internal) Events
Section 3.3

Event Options

Order of Small Steps| 4
Section 3.6

External Events
Section 3.3.1

External Input
Events

I

RHS WEAK SYNCHRONOUS VAR[.-\B[.E]

Event Lifeline
Section 3.3

RHS ASYNCHRONOUS VARIABLE]

Interface Events
Section 3.3.2

COMBO SYNTACTIC

[STRGNG SYNCHRONOUS EVF,\'T]
NEGATION OF

TRIGGERS

< “And” Branch

@ "Exclusive Or” Branch

LAST SMALL STEP
GENERATED EV

Priority
Section 3.7
COMBO TAKE ONE

—<{Comba-Step Maximality — Section 3.8 CoMBO TAKE MANY

[\\"FAK SYNCHRONOUS EVENT]

ASYNCHRONOUS EVENT]
[HyBsrIn OU7

EVENTS

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.

Revisiting the Example

enabled events: [inc_one, inc_two]

Plant

Proecess_1

Process_ 2

. -~ - -~
1.1[tnc.one procecss t,i ?,'J’l.(.'_f:’a’,i.-'l') Process

Jar=a+1; b:=b41; E Jar=a+2; b:=b42;
e LA e
(Idie_l } Wait_1 J : [mze_'z W [W’aiti }
&) = i - e

ta: end_process : ty: end_process

Controller
ts: process start_process(a, b)
~y .
Idle Wait

L . y

tg: end_processfa:=0; b:=0;

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.

Revisiting the Example

enabled events: [inc_one, inc_two]

Plant

Proecess_1

Process_ 2

. -~ - -~
1.1[tnc.one procecss t,i ?,'H.(_.'_LT,A.-'I') Process

Jar=a+1; b:=b41; E Jar=a+2; b:=b42;
P — = LA s
(Idie_l } Wait_1 J : [Idie_‘z W [W’aiti }
R = i - e
to: end_process : ty: end_process
Controller
ts: process start_process(a, b)
—x .
Tdie Wait

L . y

tg: end_processfa:=0; b:=0;

concurrency: single
event lifeline: next combo step
assignment: RHS small step
-> <{t1}, {t3}, {t5}> and
<{t3}, {t1}, {t5}>

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.

Revisiting the Example

enabled events: [inc_one, inc_two]

Plant

Proecess_1

Process 2 . -
tarinclwo process

Jar=a+2; b:=b42;

- -~
1.1[tnc.one procecss

Xﬂ.::a-l-l; b:=b+41;

~ . o - _
(hﬂe_l } Wait_1 J ! [Id.-fej ‘ Wait_2 }
— . ______j;- E - ______,5:-7-
to: end_process : ty: end_process
Controller

D p - .
Tdle Wait
'_____—/

tg: end_processfa:=0; b:=0;

concurrency: single
event lifeline: next combo step
assignment: RHS small step
-> <{t1}, {t3}, {t5}> and
<{t3}, {t1}, {t5}>

event lifeline: present in remainder

-> <{t1}, {t5}, {t3}> becomes possible

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. et al., Deconstructing the semantics of big-step modelling languages, Requirements Eng (2010) 15: 235.

Event Lifeline

——

[] =) - - - = .
an [-;.l 1 I ."Fji‘."_r] .ﬁ'-jr;l_ R X t .-1I|]'."I
Small Steps — —— —— —— e
T| ! T_: : TE; H T| T‘,
Combo Steps . — RN — |
N & i 2 :

Big Step N .

PRESENT IN WHOLE L ; f : |
PRESENT IN REMAINDER : l : |
PRESENT IN NEXT COMBO STEP | |

PRESENT IN NEXT SMALL STEP ° L |
PRESENT IN SAME L 1

117

Semantic Options: Examples

Big Step Maximality Take Many Take Many Take Many
Internal Event Lifeline Queue Next Combo Step Queue

Input Event Lifeline First Combo Step First Combo Step First Combo Step
Priority Source-Child Source-Parent Source-Parent
Concurrency Single Single Single

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016.

Child-first vs Parent-first
Event-driven vs Cycle-based

b Composite States Execution

In which order are transitions evaluated in a HSM?

main region main region

T Parent-first execution tries to take T
transitions top down

Parent) o B Parent) o B

L — "
: r
._ﬂ] Child-first execution tries to take o—w]
BT -~ ey
transition bottom up
x J 7 b . R
| raise e | , —) | raise e |
main region Chlld traﬂSItIOnS Overwrlte parent main region

T behavior T
Parent = B 7 Parent : T\
= - @

Parent transitions shadow child

HTJ’ e () behavior ._'TJ» e c
ﬂ e
) R —

itemis © 2010-2019 - all rights reserved - 289

Event-driven vs. Cycle-based

The behavior of state machines are executed in single
‘run-to-completion’ steps.

1
;hj < Event-driven execution runs a single RTC step

event , ——> rics,

for each incoming event

event , —» rics,
event ; — > rics;

isochronously.

Cycle-based execution runs RTC steps —~—

-

Execution depends on events

awny

vent , event ; — > rics,
rtcs

Execution is independent of events
‘guard-driven’ transitions possible: [X==10]

eventg —— > ricsg

S

One event visible in RTC step

0.n events visible in RTC step

?

itemis © 2010-2019 - all rights reserved - 290

event , —5

event, —p-
event ; -

event , event g —-

event g —

awn

—p-rtcs,
—»-rics,
—»-rics,
—»-rtcs ,
—»-rtcsg

—»-rtcs g

* multi-step RTC in event-driven execution

e all internal & in events raised within a
RTC are processed

e each in event is processed by a single
step which are composed to a RTC step

* makes use of event queues: in & internal

* internal event have higher priority than
In events

b Event-driven: event queuing

[Rtermal events internal event queue: \

HEEEN

e

o -

A

raise j

B W i C
‘ e/ raise |,
;r, S j

v 4

raise e

rareeiiey o internal event queue: \

HERRn

Ve

A W B). C
e/ raise |,
\—f- raise j ' J\T-
W

iternal events internal event queue:

HEEEEN

.—»}/—»

raisej o

J

W

internal events internal event queue:

VL[]

A
e/ raise i;

raise j

Composition

Composition of Statecharts

* Composition of multiple Statechart models

* |nstantiation
e Communication
* Semantics

e Often solved in code...

normal

L L4
J ~displayRed

after(60) / ~displayGreen

police_interrupt

I interrupted

7 ~di

after(s) /
~displayRed|

Gree

palice_interrupt

after(55) / ~displayYellow

Yellow

©

splayYellow

=

after(1) /
after(1) / ~displayYellow|
~displayNone

normal

/ ~displayRed

o

after(60) / ~displayGreen

police_interrupt

I'd interrupted

1 ~displayellow

after(s) /
~displayRed|

Green

police_interrupt

’
T

after(1) / ~displayellow
~displayNone

{1

after(55) / ~displayYellow

&

|

4

o normaly

L L4
 ~displayRed

0

after(60) / ~displayGreen

after(s) /
~displayRed|

Green

{1

after(55) / ~displayVellow

Yellow

i/

police_interrupt

police_interrupt

T

{ interrupted™

~displayYellow

o)

after(1} /
after{1) / “displayYellow
~displayNone

ﬂ,

after(60) / ~displayGreen

Yellow
—
]
|
. J
t‘ . normal
1 ~displayRed
interrupted

1 ~displayellow

after(5) /

Green

r
Yellow j
police_interrupt
~displayRed| after(1) /

police_interrupt

after(1) / ~displayvellow
~displayNone

{1

after(55) / ~displayYellow

Yellow

&

|

Composition Example

Crossing

_ _ — = trafficLightA

e _ trafficLightB
.7 /" | ER
g { —

7 \ -
rd \ S
/ N\
/ N
/ N\
|4 A

TrafficLightCtrl < — TrafficLightCtrl

POUICE INTERRUPT

"nul

'

Composition Example

crossing control

$»P——

toggleCnOf

togglaCnOff
on
entry / trafficLightA.enter; trafficLightB.enter
exit / trafficLightA. ~exit; trafficLightB. ~exit
r
Narmal
inner region]
| N p Entry /[
prepare release l trafficLightA.raiseStandby;
P— entry; » releasa A togglelnterrupt trafficLightB.raiseStandby
trafficLightA.raiseLock; after 10s entry / trafficLightA.raiseRelease
trafficLightB. raiseLock J mg'glejnterrupt exit [
. trafficLightA.raiseStandby;

o trafficLightB. raiseStandby
every 100ms every 100ms

[trafficLightB.isRaisedLocked] [trafficLightA.isRaisedLocked]

release B i prepare release B
entry / trafficLightB.raiseReleasa S i entry /
trafficLightA.raiselock;
trafficLightB. raiseLock

-

Dynamic Structure: SCCD

Behavior

* Timed

* Autonomous
* Interactive

* Hierarchical
Structure
* Dynamic

e Hierarchical

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In
3rd Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016.

Dynamic Structure: SCCD

Behavior
* Timed
([rmmangion = * Autonomous
T * Interactive
5 * Hierarchical
l Structure
* Dynamic

* Hierarchical

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In
3rd Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016.

Dynamic Structure: SCCD

Behavior
* Timed
([rmmangion = * Autonomous
T * Interactive
5 * Hierarchical
l Structure
* Dynamic

e Hierarchical

Design?

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In
3rd Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016.

Dynamic Structure: SCCD

Behavior
* Timed
* Autonomous
* Interactive

N * Hierarchical
Structure
* Dynamic

e Hierarchical

Design? Statecharts

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In
3rd Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016.

Dynamic Structure: SCCD

Behavior
e Timed

e Autonomous

* Interactive

N * Hierarchical
Structure
* Dynamic

e Hierarchical

Design? Statecharts + 777

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In
3rd Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016.

Dynamic Structure: SCCD

Behavior
e Timed

e Autonomous

* Interactive

N * Hierarchical
Structure
* Dynamic

e Hierarchical

Coordination/Communication/Dynamic Structure often

Design? Statecharts + 7?7 | :
g implemented in code...

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe. SCCD: SCXML extended with class diagrams. In
3rd Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016.

301

302

<<instance-of>> "~

-~
~

oD

wil: Window

R

b2: Ball

bi: Ball

-color: "black"
-pos: [10,51]

-color: "yellow
-pos: [71,60]

-vel: [0.74, -0.23]

-vel: [0.0, 0.0]

303

<<instance-of>> "~

-~
~

oD

wil: Window

R

b2: Ball

bi: Ball

-color: "black"
-pos: [10,51]

-color: "yellow
-pos: [71,60]

-vel: [0.74, -0.23]

-vel: [0.0, 0.0]

Communication: Event Scopes

oD

wl: Window

7# BouncingBalls

Create Window

b2: Ball

bl: Ball

-color: "black"
-pos: [10,51]

-color: "yellow"
-pos: [71,60]

O..

-vel: [0.0, 0.0]

E s C R left-click left-click
bouncing selected
release
';SCR left-click left-click
bouncing selected
release

drag

dragging

drag

dragging

Communication: Event Scopes

oD

wl: Window

b2: Ball

_—

bl: Ball

7 BouncingBalls

Create Window

-color: "black"

-color: "yellow"
-pos: [71,60]

-pos: [10,51]
-vel: [0.74, -0.23]

-vel: [0.0, 0.0]

S SCR left-click left-click
. . drag
bouncing selected dragging
.‘ release
"‘x, SC R left-click left-click drag
{ . .
O O OF
bouncing selected dragging
release

Communication: Event Scopes

BROADCAST ’

oD

wl: Window

/gﬁ&‘ﬂ//"

b2: Ball

bl: Ball

-color: "black"

-color: "yellow"
-pos: [71,60]

-pos: [10,51]

-vel: [0.0, 0.0]

7 BouncingBalls = ! X SC R
Create Window left-click left-click dra
P
bouncing selected dragging
. release
9 O gSCR left-click left-click dra
O - 9
bouncing selected dragging
release

Communication: Event Scopes

BROADCAST ’

OUTPUT

oD

&<

-~

~

wl: Window

b2: Ball

bl: Ball

7 BouncingBalls

-color: "black"

e |

-color: "yellow"
-pos: [71,60]

-pos: [10,51]
-vel: [0.74, -0.23]

-vel: [0.0, 0.0]

drag
.‘

-~ 7 'serR
Fon El left-click left-click
bouncing selected
. release
o O gSCR left-click left-click
bouncing selected
release

dragging

dragging

drag

Communication: Event Scopes

Object Manager

BROADCAST ’

OUTPUT

oD

&<

-~

~

wl: Window

b2: Ball

bl: Ball

7 BouncingBalls

Create Window

-color: "black"

e |

-color: "yellow"
-pos: [71,60]

-pos: [10,51]
-vel: [0.74, -0.23]

scrR

left-click

-vel: [0.0, 0.0]

left-click

drag
.‘

bouncing selected
release
o O gSCR left-click feft-click
bouncing selected

release

dragging

dragging

drag

Communication: Event Scopes

e
et
0.~

Object Manager

& .~ BROADCAST -

OUTPUT
<"

‘oD
y3

wl: Window

b2: Ball

bil: Ball

7 BouncingBalls

Create Window

-color: "black"

&“

-color: "yellow"
-pos: [71,60]

A

-pos: [10,51]
-vel: [0.74, -0.23]

. SCR

bouncing

left-click

-vel: [0.0, 0.0]

left-click

drag

bouncing selected
release
O ',SCR left-click left-click

selected
release

dragging

drag
.‘

dragging

SCCD Compiler

Language Javascript |

Gameloopl

Eventloop

‘ Compiler Options K———Ol Platform 5

Semantics

e Internal Event
Big Ste
9 P Lifeline

Maximality

S
|Que{]|>©5mall Sl:epl
Take One |

‘Next Combo Stepl

Input Event

Lifeline Priority
‘ First Small Step | |Whole‘ | Source-Parent ‘
|First Combo Step ‘ ‘ Source-Child |

Threads
--— =mEmEErTHs"""sssssE=s==-=]
Statechart . . .
event 1 1 [1
I . 1,
time
UI Event Loop
s S P e
Statechart . . .
1 T] . . !
event . L ¥ . . '
time
Game Loop
Statechart ,delayed cTTToTTTTTTTTT Tt '
event Ipro_g.essingl . .
v et e "1
I -
A event y F y ¥ 3 .
processing time

Simon Van Mierlo, Yentl Van Tendeloo, Bart Meyers, Joeri Exelmans, and Hans
Vangheluwe. SCCD: SCXML extended with class diagrams. In 3rd Workshop on
Engineering Interactive Systems with SCXML, part of EICS 2016, 2016

SCCD

https://msdl.uantwerpen.be/documentation/SCCD/

SCCD Documentation

SCCD [SCCD] is a language that combines the Statecharts [Statecharts] language with Class Diagrams. It allows users to model complex, timed,
autonomous, reactive, dynamic-structure systems.

The concrete syntax of SCCD is an XML-format loosely based on the W3C SCXML recommendation. A conforming model can be compiled to a number of
programming languages, as well as a number of runtime platforms implemented in those languages. This maximizes the number of applications that can be
modelled using SCCD, such as user interfaces, the artificial intelligence of game characters, controller software, and much more

This documentation serves as an intraduction to the SCCD language, its compiler, and the different supported runtime platforms

Contents

« Installation

o Download

o Dependencies

o SCCD Installation
Language Features

o Top-Level Elements
Class Diagram Concepts
Statechart Concepts
Executable Content
Macros

o Object Manager
Compiler
Runtime Platforms

o Threads

o Eventloop

o Gameloop
Examples

o Timer

o Traffic Lights
Semantic Options

o Big Step Maximality

o Internal Event Lifeline

o Input Event Lifeline

o Priority

o Concurrency
Socket Communication

o Initialization

o Input Events

o Qutput Events

o HTTP client/server
Internal Documentation

o Statecharts Core

o
o
o
o

References

[SCCD] Simon Van Mierlo, Yentl Vian Tendeloo, Bart Meyers, Joeri Exelmans, and Hans Vangheluwe SCCD- SCXML extended with class diagrams. In 3rd
Workshop on Engineering Interactive Systems with SCXML, part of EICS 2016, 2016. [LINK]
[Statecharts] David Harel. Statecharts: A visual formalism for complex systems. Sei. Comput Program. 8, 3 (1987), 231-274 [LINK]

https://msdl.uantwerpen.be/documentation/SCCD/

Recap

* Model the behaviour of complex, timed, reactive, autonomous
systems

* “What” instead of “How” (= implemented by Statecharts
compiler)
* Abstractions:
 States (composite, orthogonal)
* Transitions
* Timeouts
* Events

* Tool support:
* Yakindu
e SCCD

