
Object-Oriented Software Design
with different

Unified Modelling Language (UML) notations

Use Case Notation, Class Diagrams, Object
Diagrams, Sequence Diagrams,

Regular Expressions and State Automata

Bart Meyers

Hans Vangheluwe

1

2

requirements
(i.e., a set of properties)

design

(may in turn serve as requirements ...)

satisfied by →

3OO Design Notations (UML) →

Sources/Background Material

• Use cases: http://www.cs.mcgill.ca/~joerg/SEL/COMP-533_Handouts_files/COMP-533%204%20Use%20Cases.pdf
• UML diagram editing: http://diagrams.net (drawio)
• Simple UML rendering tool: http://plantuml.com/
• Class diagrams: http://www.uml-diagrams.org/class-diagrams-overview.html
• Sequence diagrams: http://www.uml-diagrams.org/sequence-diagrams.html
• Regular expressions: http://www.zytrax.com/tech/web/regex.htm
• Test Regular Expressions online: https://regex101.com/
• FSA: http://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/automata-theory/basics.html

4

http://www.cs.mcgill.ca/~joerg/SEL/COMP-533_Handouts_files/COMP-533%204%20Use%20Cases.pdf
http://diagrams.net/
http://plantuml.com/
http://www.uml-diagrams.org/class-diagrams-overview.html
http://www.tracemodeler.com/articles/a_quick_introduction_to_uml_sequence_diagrams/
http://www.zytrax.com/tech/web/regex.htm
https://regex101.com/
http://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/automata-theory/basics.html

Use Cases

• Document functional requirements of the system
• interactions between system and environments to achieve user goals

• Understandable for (non-technical) client
• semi-formal
• complete, consistent and verifiable

• Business viewpoint
• who (actors) does what (interaction) with what purpose (goal)?
• no implementation details: black box

• See Joerg Kienzle and Shane Sendall’s presentation

5

http://www.cs.mcgill.ca/~joerg/SEL/COMP-533_Handouts_files/COMP-533%204%20Use%20Cases.pdf

http://www.cs.mcgill.ca/~joerg/SEL/COMP-533_Handouts_files/COMP-533%204%20Use%20Cases.pdf

Class Diagrams

Structure of the system + behaviour (Object-Oriented)
instances: Object Diagrams

6

cardinality is "the number of elements
in a particular set or other grouping"

multiplicity as "A specification of the range
of allowable cardinality values
– the size that a set may assume"

Class Diagram

Object Diagram

objectName:ClassName

Convention:

constraints:
 distinct names of ConductorType instances
 total #instances of MS82 < 10

Class vs. Instance

“duck typing”

delegation, object-based

Object Diagram

“(state) snapshot” during program execution

Object Diagrams

“meaning” / “(trace) semantics”of a program

= “behaviour trace”
= sequence of state “snapshots”
 (produced by code/method execution)

tim
e

Static Structure

Dynamic Structure

Trace != LOC

Railway Network Class Diagram

Sequence Diagrams

• Behaviour of the system
• (Object) Interaction diagram (not internal)

• Complementary to Class Diagrams (structure vs. behaviour)

• Complementary to Use Cases (“what?” vs. “how?”)

21

Sequence Diagrams

22

Here: single thread of interaction
(though multiple interacting objects)

Objects and Lifelines

class object
(only use class messages)

types of objects:

23

Messages (1)

• Synchronous:

• Returned value:

• Not instantantaneous:

• Found message:

24

Messages (2)

• Asynchronous:

• Message to self:

• Object creation/destruction:

25

Conditional Interaction

• Message with guard:

• Multiple messages:

• Alternative interactions:

“combined fragment”

26

Repeated Interaction (1)

• Repeated message:

• Elements in a collection:

• Combined fragment:

27

Repeated Interaction (2)

• Example:

28

Regular Expressions

or self-loop

Regular Expressions

Search pattern for finding occurrences in a string
• [eE] stands for e or E.

• [a-z] stands for one of the characters in the range a to z.

• ^ means "match at the beginning of a line/string".

• $ means "match at the end of the line/string".

• X|Y means "match either X or Y", with X and Y both sub-expressions.

• [^x] means not x, so [^E].*\n matches every line except those that start with the E character

• . matches any single character.

• X? matches 0 or 1 repetitions of X.

• X* matches 0 or more repetitions of X.

• X+ matches 1 or more repetitions of X.

• \ is used to escape meta-characters such as (. If you want to match the character (, you need the pattern \(.

• The (and) meta-characters are used to memorize a match for later use. They can be used around arbitrarily complex patterns. For example
([0-9]+) matches any non-empty sequence of digits. The matched pattern is memorized and can be referred to later by using \1. Following
matched bracketed patterns are referred to by \2, \3, etc. Note that you will need to encode powerful features such as this one by adding
appropriate actions (side-effects) to your automaton encoding the regular expression. This can easily be done by storing a matched pattern
in a variable and later referring to it again.

35

Example: Railway Junction Controller Trace

Write regular expressions (refer to the format of the given output trace) for verifying given
use cases. We use abbreviations to shorten the messages that you need to recognize in
your RegExp/FSA. Here are the mappings:

E := A train Enters the specified segment (En with n the segment number)

R := A Red signal is sent to the specified segment

G := A Green signal is sent to the specified segment

X := A train leaves the specified segment

Beyond that, each segment has a simple encoding:

1 := left incoming railway segment

2 := right incoming railway segment

3 := outgoing railway segment

36

Example: Regular Expression

If a train wants to enter the junction, it will eventually get a green light.

Anything except for “E 1”:
(([^E].*)|(E [23]))\n

Regular expression pattern (for segment 1):
^((([^E].*)|(E [23]))\n)*(E 1\n(.*\n)*G 1\n((([^E].*)|(E [23]))\n)*)*$

For segment 2:
^((([^E].*)|(E [13]))\n)*(E 2\n(.*\n)*G 2\n((([^E].*)|(E [13]))\n)*)*$

37

Finite State Automata

• Discrete states + transitions

• Change state in response to external inputs: transition

• Can be used to encode regular expressions

38

Finite State Automata Example

39

 D [0-9]
 E [eE][+-]?({D})+
 Number [({D}+{E}?)
 ({D}*'.'{D}+({E})?)
 ({D}+'.'{D}*({E})?)]

http://msdl.cs.mcgill.ca/people/hv/teaching/SoftwareDesign/COMP304B2003/assignments/assignment3/solution/

http://msdl.cs.mcgill.ca/people/hv/teaching/SoftwareDesign/COMP304B2003/assignments/assignment3/solution/

Finite State Automata
Implementation (semantics)

class Scanner:
 """
 A simple Finite State Automaton simulator.
 Used for scanning an input stream.
 """
 def __init__(self, stream):
 self.set_stream(stream)
 self.current_state=None
 self.accepting_states=[]

 def set_stream(self, stream):
 self.stream = stream

 def scan(self):
 ...

 def scan(self):

 self.current_state=self.transition(self.current_state, None)

 if __trace__:
 print "\ndefault transition --> "+self.current_state

 while 1:
 # look ahead at the next character in the input stream
 next_char = self.stream.showNextChar()

 # stop if this is the end of the input stream
 if next_char == None: break

 if __trace__:
 print str(self.stream)
 if self.current_state != None:
 print "transition "+self.current_state+" -| "+next_char,

 # perform transition and its action to the appropriate new state
 next_state = self.transition(self.current_state, next_char)

 if __trace__:
 if next_state == None:
 print
 else:
 print "|-> "+next_state

 # stop if a transition was not possible
 if next_state == None:
 break
 else:
 self.current_state = next_state
 # perform the new state's entry action (if any)
 self.entry(self.current_state, next_char)

 # now, actually consume the next character in the input stream
 next_char = self.stream.getNextChar()

 if __trace__:
 print str(self.stream)+"\n"

 # now check whether to accept consumed characters
 success = self.current_state in self.accepting_states
 if success:
 self.stream.commit()
 else:
 self.stream.rollback()
 return success

40

Finite State Automata:
encoding a specific FSA

class NumberScanner(Scanner):

 def __init__(self, stream):

 # superclass constructor
 Scanner.__init__(self, stream)

 # define accepting states
 self.accepting_states=["S2","S4","S7"]

 def __str__(self):

 return str(self.value)+"E"+str(self.exp)

 def entry(self, state, input):

 pass

def transition(self, state, input):
 """
 Encodes transitions and actions
 """

 if state == None:
 # action
 # initialize variables
 self.value = 0
 self.exp = 0
 # new state
 return "S1"

 elif state == "S1":
 if input == '.':
 # action
 self.scale = 0.1
 # new state
 return "S3"
 elif '0' <= input <= '9':
 # action
 self.value = ord(string.lower(input))-ord('0')
 # new state
 return "S2"
 else:
 return None

 elif state == "S2":
 if input == '.':
 # action
 self.scale = 0.1
 # new state
 return "S4"
 elif '0' <= input <= '9':
 # action
 self.value = self.value*10+ord(string.lower(input))-ord('0')
 # new state
 return "S2"
 elif ... 41

Workflow

42

	Slide1
	Slide 2
	Slide 3
	Slide8
	Slide15
	Slide3
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Diagrams.net (formerly DrawIO)
	Slide7
	Slide19
	Slide10
	Slide11
	Slide12
	Slide13
	Slide14
	Slide16
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide17
	Slide21
	Slide20
	Slide22
	Slide23
	Slide24
	Slide25
	Slide6

