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Hierarchy of System Specification
of Structure and Behaviour

• Basis of System Specification:

sets theory, time base, segments and trajectories

• Hierarchy of System Specification (causal, deterministic)

1. I/O Observation Frame

2. I/O Observation Relation

3. I/O Function Observation

4. I/O System

• Multicomponent Specifications

• Non-causal models

ref: Wayne Waymore, Bernard Zeigler, George Klir, . . .
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Set Theory

Properties:

{1, 2, . . . , 9}

{a, b, . . . , z}

N, N+, N+
∞

R, R+, R+
∞

EV = {ARRIV AL, DEPARTURE}

EV φ = EV ∪ {φ}

Structuring:

A × B = {(a, b)|a ∈ A, b ∈ B}

G = (E, V ), V ⊆ E × E
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Comparing things
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Nominal Scale: e.g., gender

A scale that assigns a category label to an individual.

Establishes no explicit ordering on the category labels.

Only a notion of equivalence “=” is defined with properties:

1. Reflexivity: x = x ∨ x 6= x.

2. Symmetry of equivalence: x = y ⇔ y = x.

3. Transitivity: x = y ∧ y = z → x = z.
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Ordinal Scale: e.g., degree of happiness

A scale in which data can be ranked, but in which no arithmetic

transformations are meaningful. It is meaningless to talk about

difference (distance).

In addition to equivalence, a notion of order < is defined with

properties:

1. Symmetry of equivalence: x = y ⇔ y = x.

2. Asymmetry of order: x < y → y 6< x.

3. Irreflexivity: x 6< x.

4. Transitivity: x < y ∧ y < z → x < z.
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Partial ordering

The ordering may be partial (some data items cannot be compared).

t1 t2

t3

t4 t5

t6 t7

The ordering may be total (all data items can be compared).

∀x, y ∈ X : x < y ∨ y < x ∨ x = y
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Interval Scale: e.g., Shoe Size

A scale where distances between data are meaningful. On interval

measurement scales, one unit on the scale represents the same

magnitude of the characteristic being measured across the whole range

of the scale. Interval scales do not have a “true” zero point, however,

and therefore it is not possible to make statements about how many

times higher one value is than another.

In addition to equivalence and order, a notion of interval is defined.

The choice of a zero point is arbitrary.
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Ratio Scale: e.g., age

Both intervals between values and ratios of values are meaningful. A

meaningful zero point is known. “A is twice as old as B”.
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Time Base

• Simulation of Dynamic Systems: irreversible passage of time.

• Time Base T :

– {NOW} (instantaneous)

– R: continuous-time

– N or isomorphic: discrete-time

• Ordering:

– Ordinal Scale (possibly partial ordering, for concurrency)

– Interval Scale

– Ratio Scale
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Time Bases for hybrid system models
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Time Bases for hybrid system models

TD

TC

(tc, td)

“nested time” for nested experiments.
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Behaviour ≡ Evolution over Time

• With time base, describe evolution over time

• Time function, trajectory, signal: f : T → V

• Restriction to T ′ ⊆ T

f |T ′ : T ′ → V , ∀t ∈ T ′ : f |T ′(t) = f(t)

– Past of f : f |Tt〉

– Future of f : f |T〈t

• Restriction to an interval: segment

ω : 〈t1, t2〉 → V
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Types of Segments

T

T

T

T

continuous

piecewise continuous

piecewise constant

discrete event

V

V

V

V
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Cashier-Queue System

Physical View

Queue Cashier

Departure

Arrival

Departure

Queue

Abstract View

Cashier
[ST distribution][IAT distribution]

Arrival
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Trajectories

state=
queue_length x cashier_state 

queue_length

T

1

2

0

10 20 30 40 50

cashier_state

Busy

Idle

T10 20 30 40 50

T

Input Events

Arrival

10 20 30 40 50

E1 E2

T

Output Events

Departure

10 20 30 40 50

E3 E4
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I/O Observation Frame (causal)

O = 〈T, X, Y 〉

• T is time-base: N (discrete-time), R (continuous-time)

• X input value set: R
n, EV φ

• Y output value set: system response
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I/O Relation Observation

IORO = 〈T, X, Ω, Y, R〉

• 〈T, X, Y 〉 is Observation Frame

• Ω is the set of all possible input segments

• R is the I/O relation

Ω ⊆ (X, T ), R ⊆ Ω × (Y, T )

(ω, ρ) ∈ R ⇒ dom(ω) = dom(ρ)

• ω : 〈ti, tf 〉 → X: input segment

• ρ : 〈ti, tf 〉 → Y : output segment

• note: not really necessary to observe over same time domain
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I/O Function Observation

IOFO = 〈T, X, Ω, Y, F 〉

• 〈T, X, Ω, Y, R〉 is a Relation Observation

• Ω is the set of all possible input segments

• F is the set of I/O functions

f ∈ F ⇒ f ⊂ Ω × (Y, T ), where

f is a function such that dom(f(ω)) = dom(ω)

• f = initial state: unique response to ω

• R =
⋃

f∈F f
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I/O System

• From Descriptive Variables (properties) to State.

• State summarizes the past behaviour of the system.

• Future is uniquely determined by

– current state

– future input
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SY S = 〈T, X, Ω, Q, δ, Y, λ〉

T time base

X input set

ω : T → X input segment

Q state set

δ : Ω × Q → Q transition function

Y output set

λ : Q → Y (or Q × X → Y ) output function

∀tx ∈ [ti, tf ] : δ(ω[ti,tf ], qi) = δ(ω[tx,tf ], δ(ω[ti,tx], qi))

Hans Vangheluwe Modelling and Simulation Foundations 21



Composition Property

t_ft_xt_i

Q

X

T

T

ω[t_x, t_f]ω[t_i, t_x] ω[t_i, t_f]

δ(t_x -> t_f)δ(t_i -> t_x)

δ(t_i -> t_f)
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Simulator: step through time

λ

δ

X

Q

Y

ti

ω

tf

λ

δ

ω

δ

ω

T
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Formalism classification
based on general system model

T: Continuous T: Discrete T: {NOW}

Q: Continuous ODE, DEVS Difference Eqns. (DTSS) Algebraic Eqns.

Q: Discrete Discrete-event Finite State Automata Integer Eqns.

Basis for general, standard software architecture of simulators

Further classifications based on structure of formalisms

(in particular of δ)
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Rule-based specification of δ

/ <ANY><ANY>

<ANY>

Current State

2

4

3

1

/<COPIED><COPIED>

<COPIED>

Current State

2

4

3

1

<ANY>

1

/ <ANY><ANY><ANY> <ANY>

Current State

2

4

3 5

1

/<COPIED><COPIED>

<COPIED>

<COPIED>

Current State

2

4
3

5

1

::=

::=

::=

Rule 1 (priority 3)

Rule 2 (priority 1)

Rule 3 (priority 2)

Locate Initial Current State

State Transition

Local State Transition

condition:
matched(4).input == input[0]

action:
remove(input[0])

condition:
matched(4).input == input[0]

action:
remove(input[0])

<COPIED>

Current State

3

1

2
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System under study: T, h controlled liquid

is_full

is_empty
heat

off

cool

is_cold
is_hot

fill empty
closed
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Detailed (continuous) view, ALG + ODE

Inputs (discontinuous → hybrid model):

• Emptying, filling flow rate φ

• Rate of adding/removing heat W

Parameters:

• Temperature of influent Tin

• Cross-section surface of vessel A

• Specific heat of liquid c

• Density of liquid ρ

State variables:

• Temperature T

• Level of liquid l

Outputs (sensors):

• is low, is high, is cold, is hot



















































dT
dt

= 1
l
[ W
cρA

− φ(T − Tin)]

dl
dt

= φ

is low = (l < llow)

is high = (l > lhigh)

is cold = (T < Tcold)

is hot = (T > Thot)
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SY SODE
V ESSEL = 〈T , X, Ω, Q, δ, Y, λ〉

T = R

X = R × R = {(W, φ)}

ω : T → X

Q = R
+ × R

+ = {(T, l)}

δ : Ω × Q → Q

δ(ω[ti,tf ], (T (ti), l(ti))) =

(T (ti) +

∫ tf

ti

1

l(α)
[
W (α)

cρA
− φ(α)T (α)]dα, l(ti) +

∫ tf

ti

φ(α)dα)

Y = B × B × B × B = {(is low, is high, is cold, is hot)}

λ : Q → Y

λ(T, l) = ((l < llow), (l > lhigh), (T < Tcold), (T > Thot))
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High-abstraction-level (discrete) view: FSA

level

temperaturecold T_in_between hot

full

l_in_between

empty (cold,empty)

emptyfill

emptyfill

cool

heat

cool

heat
(hot,full)

(hot,empty)

(cold,full)

(cold,l_ib) (T_ib,l_ib) (hot,l_ib)

(T_ib,full)

(T_ib,empty)

at this level: verification of properties possible
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don’t build simulator (Operational Semantics)
but Transform (Transformational Semantics)

DEVS

Process Interaction 
Discrete Event

state trajectory data (observation frame)

Petri Nets
Statecharts

scheduling-hybrid-DAE

Bond Graph a-causal

Bond Graph causal

DAE non-causal set

DAE causal set

PDE

Transfer Function

Difference Equations

System Dynamics

KTG Cellular Automata

Event Scheduling 
Discrete Event

3 Phase Approach 
Discrete Event

DAE causal sequence (sorted)

DEVS&DESS

Activity Scanning 
Discrete Event

Timed Automata

Causal Block Diagram
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Non-determinism: Traffic network Petri Net

bot_W2E
0

turn1
0

to_N_or_W
0

turn2
0

bot_N2S
0

cars
2

bot_W2E_dep

top_S2W_dep

bot_N2S_dep

top_arr
bot_N2S_arr

bot_W2E_arr

top_S2N_dep

bot_CAP
1

turn1_CAP
1

top_CAP
1

turn2_CAP
1
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All traces → Reachability Graph

[turn1_CAP, cars(2), bot_CAP, top_CAP, turn2_CAP]

[turn1_CAP, cars, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

[cars, turn1, bot_CAP, top_CAP, turn2_CAP]

bot_W2E_dep

[turn1_CAP, cars, bot_CAP, turn2_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2, cars, bot_CAP, top_CAP]

top_S2W_dep

[turn1_CAP, cars, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

[turn1_CAP, turn2, bot_W2E, top_CAP]

bot_W2E_arr

[turn2, turn1, bot_CAP, top_CAP]

bot_W2E_dep

[turn1_CAP, turn2, bot_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2_CAP, bot_N2S, to_N_or_W]

bot_N2S_arr

[turn1_CAP, turn2, top_CAP, bot_N2S]

top_S2W_dep

bot_N2S_dep

bot_N2S_dep

top_S2N_dep

top_S2N_dep

[turn1, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

top_arr

[turn1_CAP, bot_W2E, turn2_CAP, to_N_or_W]

bot_W2E_arr

[turn1, bot_CAP, turn2_CAP, to_N_or_W]

bot_W2E_dep

top_S2W_dep

top_S2N_dep

top_S2W_dep

top_S2N_dep

top_S2N_dep

[turn1, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

top_arr
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Probabilistic → Monte-Carlo Simulation

www.engr.utexas.edu/trafficSims/
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Causality: Modelica vs. Matlab/Simulink
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Multicomponent Specification

• Collections of interacting components

• Compositional modelling

– Modular (interaction through ports only).

Encapsulated. Allows for hierarchical (de-)composition.

– non-modular (direct interaction between components).

Not encapsulated. “global” variable access. Direct interaction

through transition function
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Causal Block Diagram

x0

0.0

y0

1.0

IC
x

IC
y

− I OUT

K

1.0

0.0

PLOT
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Multi-formalism / Heterogeneous MoC (Ptolemy)

solution:

• co-simulation

• formalism transformation (using graph transformation)
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Transform to common Formalism

DEVS

Process Interaction 
Discrete Event

state trajectory data (observation frame)

Petri Nets
Statecharts

scheduling-hybrid-DAE

Bond Graph a-causal

Bond Graph causal

DAE non-causal set

DAE causal set

PDE

Transfer Function

Difference Equations

System Dynamics

KTG Cellular Automata

Event Scheduling 
Discrete Event

3 Phase Approach 
Discrete Event

DAE causal sequence (sorted)

DEVS&DESS

Activity Scanning 
Discrete Event

Timed Automata

Causal Block Diagram
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Hybrid Simulation
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Simulation Trace
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A Zoo of Formalisms

Hierarchy of System Specifications

Finite State Automata (FSA)

Petri Nets

DEVS

GPSS

Event Scheduling

Activity Scanning

Process Interaction

Discrete Event

Statecharts

Hybrid

Continuous-Time

Forrester System Dynamics

Population Dynamics

Modelica
(multi-physics)

CSSLs

continuous-time CBDs

discrete-time CBDs

time-less CBDs

Causal Block Diagrams
Formalisms

Animation

is theory behind

visualized using

Tackling Complexity: challenges

Modelling Language Engineering

used to implement
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