Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation to tackle Complexity

Hans Vangheluwe

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation

- Modelling and Simulation for ...
- The Modelling Relationship

2 Causes of Complexity

- Large Number of Components
- Diversity of Components
- Non-compositional/Emergent Behaviour
- Uncertainty
- 3

Dealing with Complexity

- Multiple Abstraction Levels
- Optimal Formalism
- Multi-Formalism
- Multiple Views/Aspects

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for

Simulation ... when too costly/dangerous

analysis \leftrightarrow design

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for

Simulation ... real experiment not ethical

"physical" simulation, training

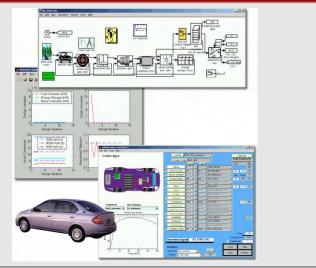
Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for

Simulation ... evaluate alternatives


Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for

Simulation ... "Do it Right the First Time"

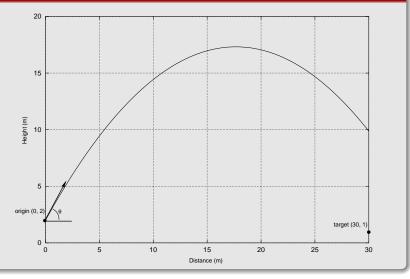
Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for

essence: "shooting" problems

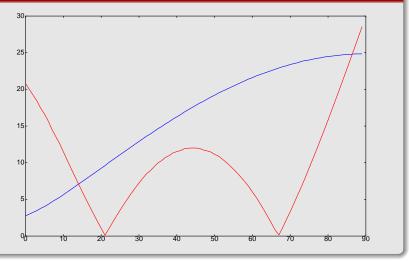

Causes of Complexit

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for

defining a "hit"

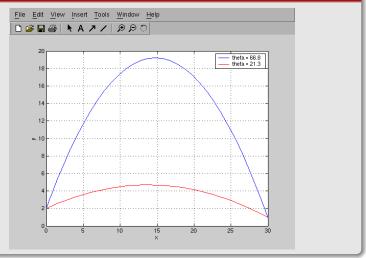

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for

optimizing a "performance metric"

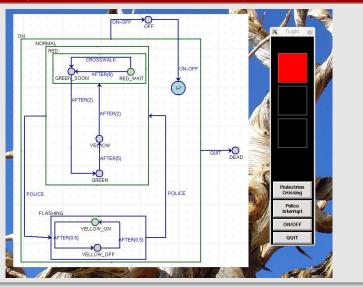

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for

optimal solution...s


Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

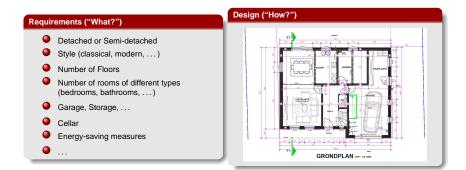
Modelling and Simulation for ...

Modelling/Simulation ... and code/app Synthesis

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for


The spectrum of uses of models

- Documentation
- Formal Verification (all models, all behaviours)
- Model Checking (one model, all behaviours)
- Test Generation
- Simulation (one model, one behaviour)
 - ... calibration, validation, optimization, ...
- Application Synthesis

Dealing with Complexity

Multi-Paradigm Modelling

Modelling and Simulation for

Modelling	and	Simulation		
000000000000000000000000000000000000000				

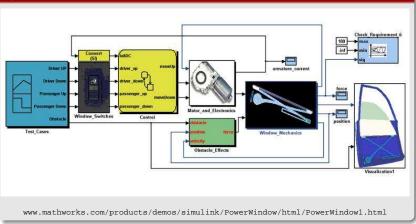
Dealing with Complexity

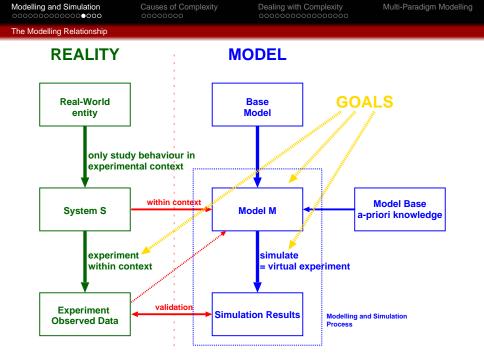
Multi-Paradigm Modelling

Modelling and Simulation for ...

Systeem Boundaries

- System to be built/studied
- Environment with which the system interacts

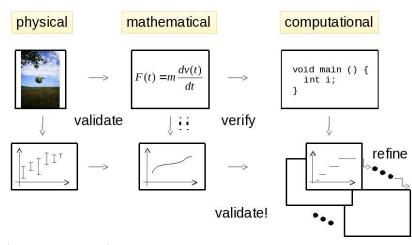

Causes of Complexity


Dealing with Complexity

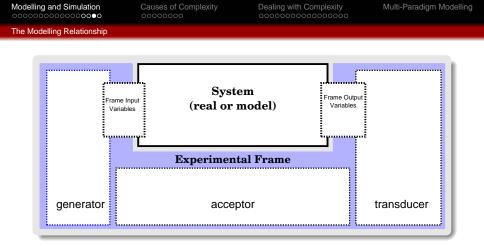
Multi-Paradigm Modelling

Modelling and Simulation for

Systeem vs. "Plant"



Modelling	and Simulation
	00000000000000


Dealing with Complexity

Multi-Paradigm Modelling

The Modelling Relationship

(thanks to Pieter Mosterman)

- set of all "contexts" in which model is valid
- includes experiment descriptions: parameters, initial conditions

 \sim re-use, testing

Causes of Complexity

Dealing with Complexity

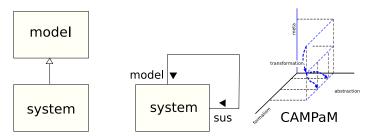
Multi-Paradigm Modelling

The Modelling Relationship

Jean Bézivin

Everything is a model !

Jean-Marie Favre



Nothing is a model !

Hans Vangheluwe

Model everything !

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Dealing with Complexity

Causes of Complexity

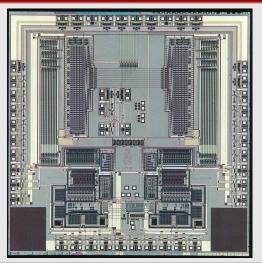
Dealing with Complexity

Multi-Paradigm Modelling

Large Number of Components

Crowds

www.3dm3.com


Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Large Number of Components

Number of Components – hierarchical (de-)composition

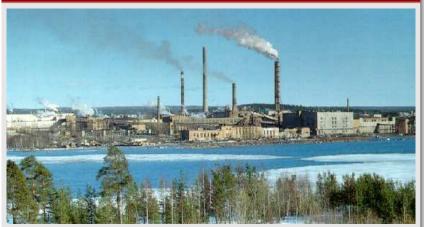
Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Diversity of Components

Diversity of Components: Power Window


Causes of Complexity

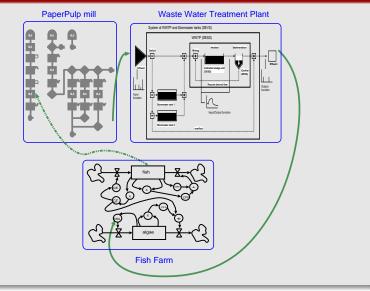
Dealing with Complexity

Multi-Paradigm Modelling

Diversity of Components

Diversity of Components: Paper Mill

www.gov.karelia.ru

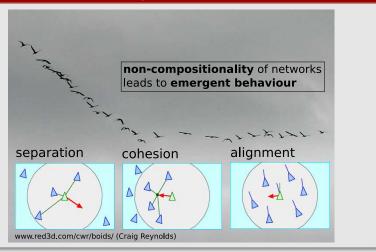

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Diversity of Components

Paper Mill Model


Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Non-compositional/Emergent Behaviour

Non-compositional/Emergent Behaviour

Causes of Complexity 00000000

Dealing with Complexity

Multi-Paradigm Modelling

Non-compositional/Emergent Behaviour

Engineered Emergent Behaviour

Robert Bogue. Swarm intelligence and robotics. Industrial Robot: An International Journal.

Modelling and Simulation	Causes of Complexity	Dealing with Complexity	Multi-Paradig
Uncertainty			

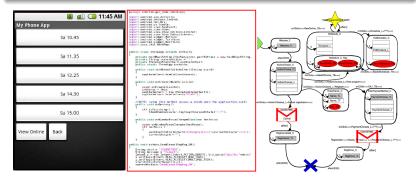
am Modelling

• Often related to level of abstraction: for example continuous vs. discrete

www.engr.utexas.edu/trafficSims/

• uncertainty \neq imprecise \neq not rigorous

Dealing with Complexity


Multi-Paradigm Modelling

Guiding principle (\sim physics: principle of minimal action)

minimize accidental complexity, only essential complexity remains

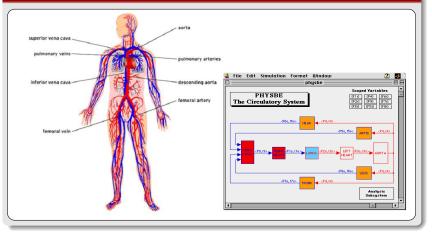
Fred P. Brooks. No Silver Bullet – Essence and Accident in Software Engineering. Proceedings of the IFIP Tenth World Computing Conference, pp. 1069–1076, 1986.

http://www.lips.utexas.edu/ee382c-15005/Readings/Readings1/05-Broo87.pdf

Dealing with Complexity

Multi-Paradigm Modelling

Solutions

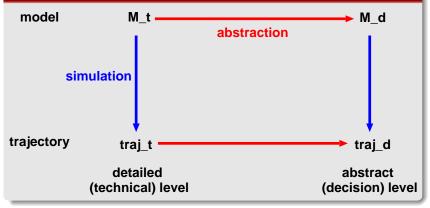

- multiple abstraction levels
- optimal formalism
- multiple formalisms
- multiple views

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Different Abstraction Levels – properties preserved



Modelling and	Simulation			

Dealing with Complexity

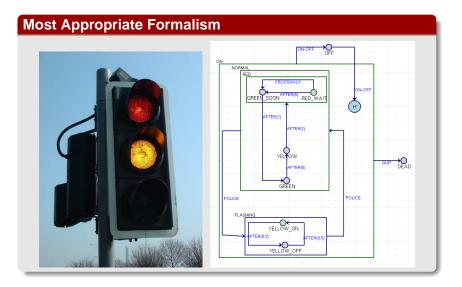
Multi-Paradigm Modelling

Abstraction Relationship

foundation: the information contained in a model M. Different questions (properties) P = I(M) which can be asked concerning the model.

These questions either result in true or false.

Abstraction and its opposite, refinement are relative to a non-empty set of questions (properties) *P*.

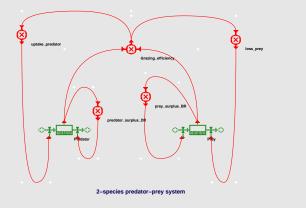

- If M₁ is an abstraction of M₂ with respect to P, for all p ∈ P:
 M₁ ⊨ p ⇒ M₂ ⊨ p. This is written M₁ ⊒_P M₂.
- M_1 is said to be a *refinement* of M_2 iff M_1 is an *abstraction* of M_2 . This is written $M_1 \sqsubseteq_P M_2$.

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

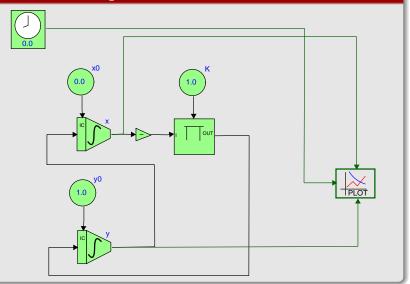
Optimal Formalism


Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Optimal Formalism

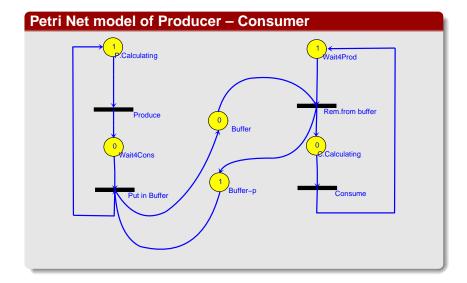

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Optimal Formalism

Causal Block Diagram model of Harmonic Oscillator

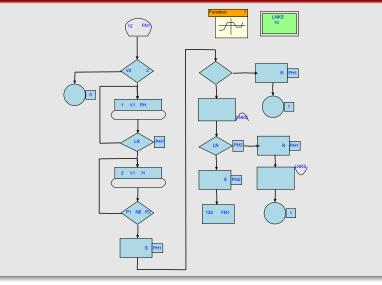


Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Optimal Formalism


Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Optimal Formalism

GPSS model of Telephone Exchange

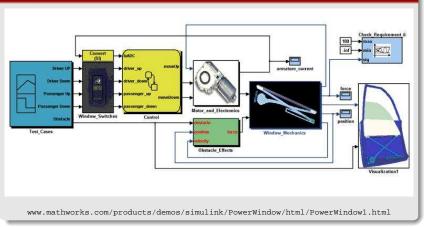
Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Multi-Formalism

Multiple Formalisms: Power Window

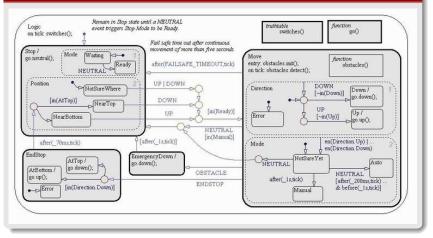

Modelling	and Simulation

Dealing with Complexity

Multi-Paradigm Modelling

Multi-Formalism

Components in Different Formalisms

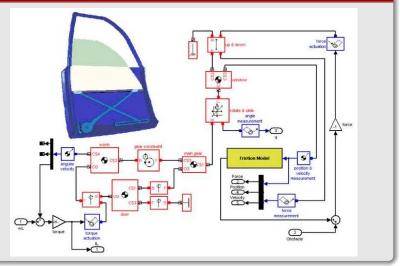


Dealing with Complexity

Multi-Paradigm Modelling

Multi-Formalism

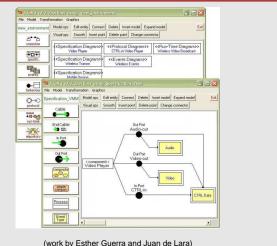
Controller, using Statechart(StateFlow) formalism


Causes of Complexity

Dealing with Complexity

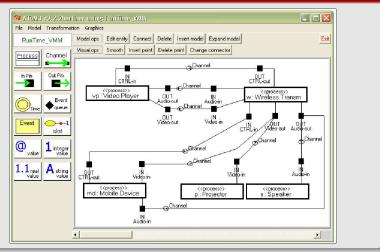
Multi-Paradigm Modelling

Multi-Formalism


Mechanics subsystem

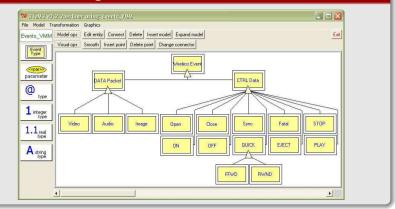
Dealing with Complexity

Multiple Views/Aspects


Multiple (consistent !) Views (in \neq Formalisms)

Dealing with Complexity

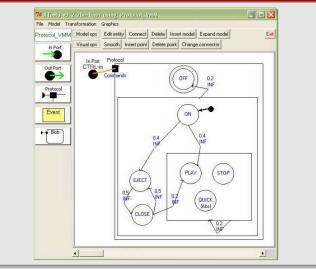
Multi-Paradigm Modelling


View: Runtime Diagram

Dealing with Complexity

Multiple Views/Aspects

View: Events Diagram


Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Multiple Views/Aspects

View: Protocol Statechart

Dealing with Complexity

No Free Lunch!

Solutions often introduce their own accidental complexity

- multiple abstraction levels (need morphism)
- optimal formalism (need precise meaning)
- multiple formalisms (need relationship)
- multiple views (need **consistency**)

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Multi-Paradigm Modelling (minimize accidental complexity)

• at the most appropriate level of abstraction

 using the most appropriate formalism(s)
 Differential Algebraic Equations, Petri Nets, Bond Graphs, Statecharts, CSP, Queueing Networks, Lustre/Esterel, ...

• with transformations as first-class models

Pieter J. Mosterman and Hans Vangheluwe.

Computer Automated Multi-Paradigm Modeling: An Introduction. Simulation 80(9):433-450, September 2004.

Special Issue: Grand Challenges for Modeling and Simulation.