Petri nets

e Formalism similar to FSA
e (Graphical notation
e C.A. Petri 1960s

e Additions to FSA:

— Explicitly (graphically) represent when event is enabled
— describe control logic

— Elegant notation of concurrency

— Express non-determinism
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Petri net notation and definition (no dynamics)

(PT,A,w)

e P={pi1,p2,...}is afinite set of places
o T ={t1,n,...}is afinite set of transitions
e AC(PXT)U(T x P)is a set of arcs

e w:A — Nis a weight function
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Class Diagram meta-model of Petri nets
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Derived Entities

o [(tj) ={pi: (pistj;) € A} set of input places to transition ¢;
(= conditions for transition)

o O(tj) ={pi: (t,pi) € A} set of output places from transition ¢;
(= affected by transition)

e Transitions = events
e similarly: input- and output-transitions for p;

e graphical representation: Petri net graph (multigraph)
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Example Petri net

Q Tl t H_1D

=1——C
/

o P:{H27027H20}

o T = {t}
o A= {(Hz,t), (02,t), (I,HQO)}
o w((Hp,t)) =2,w((07,1)) =1,w((t,H,0)) =2
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Introducing State: Petri net Markings

e (Conditions met ? Use tokens in places

e Token assignment = marking x

x:P—N

e A marked Petri net
(P7 T7A7 w, XO)

Xo is the initial marking
e The state x of a marked Petri net
x = [x(p1),x(p2),...,x(Pn)]

Number of tokens need not be bounded (cfr. State Automata states).
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State Space of Marked Petri net

e All n-dimensional vectors of nonnegative integer markings
X=N'
e Transition; € T is enabled if

x(pi) > w(pirt;),Vp; € 1(t))
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Example with marking, enabled

@ el t H_10
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Petri Net Dynamics

State Transition Function f of marked Petri net (P, T,A,w,xq)
fN'xT— N
is defined for transition ¢; € T if and only if
x(pi) > w(pi,t;),Vpi € I(t))
If f(x,t;) is defined, set X" = f(x,t;) where
X (pi) = x(pi) —w(pist;) +w(t, pi)
e State transition function f based on structure of Petri net

e Number of tokens need not be conserved (but can)
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Example “firing”

e Use PNS tool http://www.ee.uwa.edu.au/ braunl/pns/
e Select Sequential Manual execution

e Transition: [2,2,0] — [0, 1,2]
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Semantics

e sequential vs. parallel

e Handle nondeterminism:
1. User choice
2. Priorities
3. Probabilities (Monte Carlo)
4

. Reachability Graph (enumerate all choices)
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Application: Critical Section
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Reachability Graph
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Representing a Petri net as a State Machine

Construct Reachability Graph
e Reachability Graph is State Machine
e States are tuples (p1,p2,...,Pn)
e Events correspond to ¢; firing

e May be infinite
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Representing a State Machine as a Petri net

1. no output

2. with output

= automatic (though inefficient) transformation
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Modular Composition: Communication Protocol

Build incrementally:
1. Single transmitter: FSA vs. Petri net
2. Two transmitters competing for channel
Pros/Cons of Petri net models (depends on goals !):
e Petri net is more complex than FSA for single transmitter
e More insight
e Incremental modelling
e Modular modelling

e [ntuitive modelling of concurrency
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Single Transmitter FSA
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Idle Message present Transmitting
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Single Transmitter Petri net
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Concurrent, Non-interacting Transmitters
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Concurrent, Interacting Transmitters

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 21/21



