
Petri nets
� Formalism similar to FSA

� Graphical notation

� C.A. Petri 1960s

� Additions to FSA:

– Explicitly (graphically) represent when event is enabled

� describe control logic

– Elegant notation of concurrency

– Express non-determinism

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 1/21



Petri net notation and definition (no dynamics)

� P� T � A � w �

� P� � p1 � p2 ��� � � 	 is a finite set of places

� T� � t1 � t2 �� � � 	 is a finite set of transitions

� A 
 � P� T �
� � T� P � is a set of arcs

� w : A � � is a weight function

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 2/21



Class Diagram meta-model of Petri nets

PetriNet

+addPlace()
+addTransition()
+addArc(weight:int=1)
+draw()

Place
+name: String
+numTokens (marking): int = 0
+draw()

places
0..*

1

unique name

Transition
+name: String
+enabled: Boolean
+draw()

transitions
0..*

1

unique name

0..* 1

1 0..*

Arch
+weight: int = 1
+draw()

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 3/21



Derived Entities
� I � t j �� � pi : � pi � t j ��� A 	 set of input places to transition t j

(� conditions for transition)

� O � t j �� � pi : � t j � pi ��� A 	 set of output places from transition t j

(� affected by transition)

� Transitions� events

� similarly: input- and output-transitions for pi

� graphical representation: Petri net graph (multigraph)

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 4/21



Example Petri net
� P� � H2 � O2 � H2O 	

� T� � t 	

� A� � � H2 � t � � � O2 � t � � � t � H2O � 	

� w � � H2 � t � �� 2 � w � � O2 � t � �� 1 � w � � t � H2O � �� 2

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 5/21



Introducing State: Petri net Markings
� Conditions met ? Use tokens in places

� Token assignment� marking x

x : P � �

� A marked Petri net

� P� T � A � w � x0 �

x0 is the initial marking

� The state x of a marked Petri net

x� � x � p1 � � x � p2 � ��� � � � x � pn � �
Number of tokens need not be bounded (cfr. State Automata states).

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 6/21



State Space of Marked Petri net
� All n-dimensional vectors of nonnegative integer markings

X� � n

� Transition t j� T is enabled if

x � pi �� w � pi � t j � ��� pi� I � t j �
McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 7/21



Example with marking, enabled

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 8/21



Petri Net Dynamics

State Transition Function f of marked Petri net � P� T � A � w � x0 �

f : � n� T � � n

is defined for transition t j� T if and only if

x � pi �� w � pi � t j � ��� pi� I � t j �

If f � x � t j � is defined, set x� � f � x � t j � where

x� � pi �� x � pi ��� w � pi � t j ��� w � t j � pi �

� State transition function f based on structure of Petri net

� Number of tokens need not be conserved (but can)

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 9/21



Example “firing”
� Use PNS tool http://www.ee.uwa.edu.au/ braunl/pns/

� Select Sequential Manual execution

� Transition: � 2 � 2 � 0 � � � 0 � 1 � 2 �

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 10/21



Conflict, choice, decision

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 11/21



Semantics
� sequential vs. parallel

� Handle nondeterminism:

1. User choice

2. Priorities

3. Probabilities (Monte Carlo)

4. Reachability Graph (enumerate all choices)

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 12/21



Application: Critical Section

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 13/21



Reachability Graph

[1,0,1,0,1]

[0,1,0,0,1] [1,0,0,1,0]

t1 t2

t1e t2e

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 14/21



Representing a Petri net as a State Machine

Construct Reachability Graph

� Reachability Graph is State Machine

� States are tuples � p1 � p2 �� � � � pn �

� Events correspond to ti firing

� May be infinite

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 15/21



Representing a State Machine as a Petri net

1. no output

2. with output

� automatic (though inefficient) transformation

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 16/21



Modular Composition: Communication Protocol

Build incrementally:

1. Single transmitter: FSA vs. Petri net

2. Two transmitters competing for channel

Pros/Cons of Petri net models (depends on goals !):

� Petri net is more complex than FSA for single transmitter

� More insight

� Incremental modelling

� Modular modelling

� Intuitive modelling of concurrency

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 17/21



Single Transmitter FSA

I M T

Idle Message present Transmitting

ack received

arr

arr arr

transmit

timeout

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 18/21



Single Transmitter Petri net

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 19/21



Concurrent, Non-interacting Transmitters

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 20/21



Concurrent, Interacting Transmitters

McGill, February 2002 hv@cs.mcgill.ca OO Design – Petri Nets 21/21


