Petri nets

e Formalism similar to FSA
e (Graphical notation
e C.A. Petri 1960s

e Additions to FSA:

— Explicitly (graphically) represent when event is enabled
— describe control logic

— Elegant notation of concurrency

— Express non-determinism

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 1/21



Petri net notation and definition (no dynamics)

(PT,A,w)

e P={pi1,p2,...}is afinite set of places
o T ={t1,n,...}is afinite set of transitions
e AC(PXT)U(T x P)is a set of arcs

e w:A — Nis a weight function

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 2/21



Class Diagram meta-model of Petri nets

PetriNet
+addPlace ()
+addTransition ()
+addArc (weight:int=1)
+draw ()
unigque name ILI \\/; unigque name |SI
lacds v ] DLz
Place g * 0 — /\ T TranSItlon grc I:SlthDS
+name: String \\(/ +name: String
+numTokens (marking): int = 0 +enabled: Boolean
+draw ()

I AN
1 1 +draw ()
! V 0..%
1

1

Arch
+weight: int = 1
+draw ()

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 3/21



Derived Entities

o [(tj) ={pi: (pistj;) € A} set of input places to transition ¢;
(= conditions for transition)

o O(tj) ={pi: (t,pi) € A} set of output places from transition ¢;
(= affected by transition)

e Transitions = events
e similarly: input- and output-transitions for p;

e graphical representation: Petri net graph (multigraph)

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 4/21



Example Petri net

Q Tl t H_1D

=1——C
/

o P:{H27027H20}

o T = {t}
o A= {(Hz,t), (02,t), (I,HQO)}
o w((Hp,t)) =2,w((07,1)) =1,w((t,H,0)) =2

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets

5/21



Introducing State: Petri net Markings

e (Conditions met ? Use tokens in places

e Token assignment = marking x

x:P—N

e A marked Petri net
(P7 T7A7 w, XO)

Xo is the initial marking
e The state x of a marked Petri net
x = [x(p1),x(p2),...,x(Pn)]

Number of tokens need not be bounded (cfr. State Automata states).

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 6/21



State Space of Marked Petri net

e All n-dimensional vectors of nonnegative integer markings
X=N'
e Transition; € T is enabled if

x(pi) > w(pirt;),Vp; € 1(t))

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 7/21



Example with marking, enabled

@ el t H_10

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 8/21



Petri Net Dynamics

State Transition Function f of marked Petri net (P, T,A,w,xq)
fN'xT— N
is defined for transition ¢; € T if and only if
x(pi) > w(pi,t;),Vpi € I(t))
If f(x,t;) is defined, set X" = f(x,t;) where
X (pi) = x(pi) —w(pist;) +w(t, pi)
e State transition function f based on structure of Petri net

e Number of tokens need not be conserved (but can)

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 9/21



Example “firing”

e Use PNS tool http://www.ee.uwa.edu.au/ braunl/pns/
e Select Sequential Manual execution

e Transition: [2,2,0] — [0, 1,2]

H_2Z
g X
- H‘-m_.? t H_7o
| ——@
|l'.
o e
//
o7

(1)

e

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 10/21



McGill, February 2002

Conflict, choice, decision

ploace

0.

N\

v

O O

hv@cs.mcgill.ca OO Design — Petri Nets

11/21



Semantics

e sequential vs. parallel

e Handle nondeterminism:
1. User choice
2. Priorities
3. Probabilities (Monte Carlo)
4

. Reachability Graph (enumerate all choices)

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 12/21



Application: Critical Section

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 13/21



Reachability Graph

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 14/21



Representing a Petri net as a State Machine

Construct Reachability Graph
e Reachability Graph is State Machine
e States are tuples (p1,p2,...,Pn)
e Events correspond to ¢; firing

e May be infinite

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 15/21



Representing a State Machine as a Petri net

1. no output

2. with output

= automatic (though inefficient) transformation

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 16/21



Modular Composition: Communication Protocol

Build incrementally:
1. Single transmitter: FSA vs. Petri net
2. Two transmitters competing for channel
Pros/Cons of Petri net models (depends on goals !):
e Petri net is more complex than FSA for single transmitter
e More insight
e Incremental modelling
e Modular modelling

e [ntuitive modelling of concurrency

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 17/21



Single Transmitter FSA

ack received

transmit
—b

arr
timeout

arr arr

Idle Message present Transmitting

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 18/21



Single Transmitter Petri net

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 19/21



Concurrent, Non-interacting Transmitters

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets

20/21



Concurrent, Interacting Transmitters

McGill, February 2002 hv@cs.mcgill.ca OO Design — Petri Nets 21/21



