General Information

Course title
Course number
Credits
Prerequisites

Course venue
Tutorials (CRN 6584)

Enrollment Cap
Instructor

Office hours
TAs

TA Office hours
Course website

Course e-mail
Assignments

Object-Oriented Design

Winter Term 2004

Object-Oriented Design

COMP 304B (CRN 1037)

3

COMP 206 (software systems).

COMP 251 (data structures and algorithms),

COMP 302 (programming languages and paradigms),
If you do not have the pre-requisites for the course, the course will be
deleted from your record by the Faculty of Science.
Trottier 1090 (check Minerva).

Monday, Wednesday, and Friday 14:35 — 15:25
Trottier 100 (check Minerva).

Wednesday 18:35-19:55 (only when announced).
Enrollment is limited to 70 students.

Prof. Hans Vangheluwe

McConnell Engineering room 328

tel.: +1 (514) 398 44 46

e-mail: hv@cs.mcgill.ca (send course-related mail in WebCT)
Monday 16:00 — 18:00

Marc Provost (mprovol @cs.mcgill.ca)

Sadaf Mustafiz (smustad4 @cs.mcgill.ca)

Thursday 15:30 — 16:30

McConnell Engineering room 322
http://www.cs.mcgill.ca/~cs304

Discussion forum in WebCT

hand in via WebCT

Calendar Course Description

The object model, objects and classes, verification and testing, object-oriented analysis, unified modelling language and
design patterns.

Introduction and Rationale

The complexity of software systems to be built increases with the number of components, the diversity of these com-
ponents, the level of interactiveness and re-activeness, as well as with the need for integration with real-world systems.
These issues are amplified when designing real-time, embedded systems. While the complexity of systems increases, SO
does the demand for reliability, reduced production time, and maintainability. Thanks to extensive research in algorithms
and datastructures, as well as suitable —object-oriented— programming languages, re-usable libraries of “components”
have been developed. Examples are the Standard Template Library (STL) for C++ and AWT/Swing for Java. Given the

complexity of software-to-be-built, it is necessary to focus, not only on coding and programming, but also on the design
of software. The design effort provides a framework for reasoning at a level of abstraction higher than that of code (which
is, certainly in modern, object-oriented languages, already at a high level of abstraction compared to the level of machine
instructions). Thanks to this high level of abstraction

a higher level of complexity can be managed (i.e., exceeding hundreds of thousands of lines of code);

it is possible to focus on the essentials, abstracting away cumbersome detail;

abstract designs are an excellent means for communicating problems and solutions;

designs (as opposed to code-libraries) are re-usable at a level independent of implementation choices (language,
libraries). The concept of design re-use has led to the proliferation of design-patterns.

Course Content

The above introduction highlights the need for object-oriented design as opposed to coding. This will put object-oriented
programming in its proper context and allow one to tackle complex problems in a structured fashion. The object-oriented
paradigm, with all the support such as object-oriented languages, type theory, tools, UML notation, and design patterns,
has reached a sufficient level of maturity to allow a comprehensive presentation.

The goal of the course is to give in-depth insight in the nature of object-oriented analysis and design, integrating the
following related aspects:

1. understanding the (object-oriented) software development process.
software testing as an integral part of the process;

understanding the object-oriented paradigm;

el

standardized representation for design: the Unified Modelling Language (UML);

e

which criteria allow one to assess the quality of a design;
6. how to go from design to code in a structured (and possibly automated) fashion;

7. design patterns for high-level design re-use.

The course is not about a particular design method, nor a particular language or tool. We will however use the program-
ming language Python for most examples and all assignments.

The important concepts of the course as well as their inter-relationships are given in a “concept map” (in UML Class
Diagram syntax) in Figure 1.

Learning Outcomes

By the end of the course, you will

know the aspects listed above.

You will understand the meaning of these different concepts and notations, as well as when to apply them.

You will learn to reason about the quality of designs from the point of view of re-use as well as consistency.
Above all, through the assignments, you will learn to take your abstract knowledge and creatively apply it to
practical problems such as the design of a small spreadsheet application.

Course Material
Meilir Page-Jones. Fundamentals of Object-Oriented Design in UML. Object Technology Series. Addison-Wesley, 2000.
ISBN 0-201-69946-X.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns, Elements of Reusable Object-
Oriented Software. Professional Computing Series. Addison-Wesley, 1995. ISBN 0-201-63361-2.

CREATIONAL STRUCTURAL BEHAVIOURAL

v

DESIGN PATTERNS

examples of good
blueprint for

needs of
QUALITY < DESIGN » OBJECT-ORIENTED
CRITERIA SOFTWARE

l described in

I I
RE-USE CONSISTENCY UML
- UNIFIED MODELLING LANGUAGE
NESSAGE <= SERAvioon, (visual notation)
I I I

STRUCTURE INTERACTION BEHAVIOUR

[

Figure 1: Object-Oriented Design Concept Map

Several copies of these books are put on reserve at the Schulich Library.
The McGill bookstore has a reduced-price ($128.95) “package” containing both books. ISBN 0130391123.

Additional material will be made available via the course website.

Assignments and Evaluations

6 assignments (3 x 2-week, 3 x 1-week). The assignments form a series of prototypes for a spreadsheet application. The
implementation language for all assignments is Python (http://www.python.org).

Grades distribution:

e 50% on the implementation assignments. Weighting of individual assignments is based on difficulty and amount
of work.

e 15% on the midterm (in-class on Friday February 20).

® 35% on the final exam.

A supplemental exam, worth 50%, covers the whole course.
There is no opportunity to re-do or increase grades obtained for assignments.

Assignments will be judged on (in this order of importance):

correctness,

amount of work,

structure and completeness,
originality,

presentation.

Example assignments from previous incarnations of the course.

Example midterms from previous incarnations of the course.

The Rules of the Game

Original Work

McGill University values academic integrity. Therefore all students must understand the meaning and consequences of
cheating, plagiarism and other academic offences under the code of student conduct and disciplinary procedures (see
www.mcgill.ca/integrity for more information).

You are encouraged to help each other formulate the ideas behind assignment problems, but each student is required to

submit his or her own original work. Handing in work that is not your own, original work as if it is your own is plagiarism.
All re-use, collaboration, inspiration must be explicitly mentioned in the assignment.

Class Attendance

You are expected to attend class. Information may be made available on the web for your convenience, but is not a sub-
stitute for class attendance. Should you miss a class, you are responsible for finding out what material or announcements
you may have missed.

