COMP 304B — Object-Oriented Software Design
Assignment 2 — Spreadsheet Design

Solution

The requirements for this assignment are described on a here.

The design is given in the figure below.

SpreadsheetCell | None

valuate () : void
eck_dependencies () : Boolean
__(: string

Ql

sheet (sheet : SpreadsheetData) : void
e : SpreadsheetData

N Formula {abstract}
t_dnit__(: void
children |3iyaluate(): Number {abstract}
+_str__(): String
Operator {abstract} Number CellRef
#_children: List (Formula) - -__row: Integer 0.
+. r:Integer | Float): void ——column: Integer
+ Number __is_relative_row: Boolean
+ Float -__is_relative_column: Boolean
+__str (): String +this_cell: SpreadsheetCell
+__init__(row:Integer,rel_row:Boolean,column:Integer,rel_col:Boolean): void
+get_spreadsheet_coord() : Tuple
+evaluate () : Number
+_str_ (): String
Sum Product InverseSum InverseProduct
+__init__ (children:List_Of_ FNodes): void +__init__ (children:List_Of_FNodes): void +__init__ (child:List_Of_FNodes): void +__init__ (child:List_Of_FNodes): void
+evaluate () : Number +evaluate () : Number +evaluate () : Number +evaluate () : Number
+__str__(): String +__str__(): String +__str__(): String +_str__(): String
Spreadsheet
-__name: String SpreadsheetCell
-__data: SpreadsheetData -__row: Integer
#__init__ (name:String): void __column: Integer
a -__value: Float = 0.
1 -__formula: Formula = None
__formula_string: Str
void +depends_on: List
-__this_spreadsheet: SpreadsheetData = None
:Integer,column: Integer, formula_string:String=""): void
: void
Boolean
SpreadsheetData data 1 se (): Float
—__min_row: Integer = ds(): Tuple
Integer

The dia file is here. A larger image is here.
Class Diagram

Redesign first assignment

Classes in the Formula inheritance tree have only to be modified slightly: the __str__ method has been added to every

class in the inheritance hierarchy.

More importantly, the Cel1Ref class has been modified as follows:

e It now has two “is_relative” attributes.

e The this_cell attribute refers to the SpreadsheetCell object the formula belongs to.

o The constructor reflects those changes.

e The method get_spreadsheet_coord returns the absolute coordinates (a tuple containing two nonnegative inte-
gers) of the SpreadsheetCell object the Cel1Ref object refers to.

We have three new classes: Spreadsheet, SpreadsheetData and SpreadsheetCell. The first one is self-explanatory.
SpreadsheetCell

The depends_on attribute is a list that contains the absolute coordinates (tuple containing two nonnegative integers) of
the cells the object depends on.

We added the private attribute __this_spreadsheet to refer to the SpreadsheetData object the object belongs to. The
methods are described below (the methods that were not specified in the requirements are in bold):

_init__ e Set the attributes __row, __column and __ formula_string.
e Initialize the formula attribute with the __parse_formula () method.
e DoaDFSon__ formula to update the this_cell attribute in all Cel11Ref instances.

get Return the contents of the ___formula attribute

set e Set the attribute __ formula.
e DoaDFSon__ formula to update the this_cell attribute in all Cel1Ref instances.
o Initialize the _ formula_string attribute by assigning it the string returned by ___formula.__str__ ().

parse_formula Parse the attribute _ formula_string to build the attribute _ formula. Return TRUE only if the
parsing is successful.

get_depend Do a DFS on __formula to update the depends_on attribute.
get_value Return the content of the __value attribute.
get _coords Return the tuple (__row, __column).

set_spreadsheet o Setthe _ this_spreadsheet attribute.
e Call the _ get_depend () method, which updates the depends_on attribute.

get_spreadsheet Returnthe _ this_spreadsheet attribute.

evaluate Update the value attribute by evaluating the _ formula (recall: Formula.evaluate () returns a Number
object).

SpreadsheetData
The dictionary of SpreadsheetCell references is the attribute __cell_data. As explained in the requirements, the

entries are indexed by absolute coordinates, i.e., tuples containing two nonnegative integers.

The __check_dependencies method (see below) sorts the cells in an order appropriate for efficient calculation. Since
a dictionary is not ordered, we need an ordered data structure to hold the sorted coordinates. This is the role of the
__sorted_data attribute, which is a sorted list of absolute coordinates.

The methods are described below (no new methods were added):

_-init__ The constructor does nothing special.
get_cell get_cell(x, y) returns the SpreadsheetCell object _ cell_datal (x, y)], or None.

set_cell Basically, set_cell (cell) registers the SpreadsheetCell object cell in the current Spreadsheet. Since
a SpreadsheetCell object knows its coordinates, there is no need to specify row and column in the method’s
parameters. If we register a cell in a position where a cell is already present, the latter is just overwritten (disappears
thanks to garbage collection).

Pseudo code for set_cell (cell):

Let coord = cell.get_coords (). Register cell in the dictionary __cell_data, using coord as a key.
Update attributes __min_row, __max_row __min_col and __max_col as necessary.

Call cell.set_spreadsheet (self).

Call self.evaluate().

evaluate Update the whole spreadsheet

o First call the method __check_dependencies, which updates the list __sorted_data by doing a topological
sort of the dependencies.

e If _ check_dependencies returned TRUE, then for each pair (X, Y) in the list sorted_data, evaluate the
corresponding object by doing
self.get_cell (X, Y).evaluate().

_check_dependencies This method does a topological sort of the cell dependencies (updates the __sorted_data
attribute). For this it needs to look at the depends_on attribute of each SpreadsheetCell object in the dictionary
__cell _data.

The method returns FALSE iff there is a cyclic dependency (including self-loops).

Other Considerations

Initially the SpreadsheetData object is empty. There are two ways to create a new SpreadsheetCell object:

e From scratch: a SpreadsheetCell object is instantiated with a formula string,
e By copying: a SpreadsheetCell object is instantiated without a formula string, and the set method is used to
specify a formula.

(NOTE: a cell cannot be edited. It can only be overwritten). The method SpreadsheetData.evaluate is called every
time a new SpreadsheetCell object is registered.

Some of the sources of errors are:

o [llegal string in a SpreadsheetCell object,
e Reference outside the spreadsheet,
e Dependency cycles.

Below is the pseudo code for the methods CellRef.evaluate and CellRef.get_spreadsheet_coord: this should
explain why a CellRef knows its SpreadsheetCell, and why a SpreadsheetCell knows its SpreadsheetData
(Note: the method CellRef._ str__ will be implemented in a similar manner). The code also shows that in case a
SpreadsheetCell object refers to an empty cell, the latter cell is interpreted as containing the value 0..

Pseudo code for CellRef.evaluate:

e Letrow, column = get_spreadsheet_coord
Pseudo code for Cel1Ref.get_spreadsheet_coord:

Let cellrow, cellcol = self.this_cell.get_coords().
If self. is_relative_row, then

e row = self._ _row + cellrow
e clse
e row = self. row

(same idea to get column)
return (row, column)

e Letsheet = self.this_cell.get_spreadsheet ().
e Letremote_cell = sheet.get_cell (row, column).

e If remote_cell = None, then
e return Number (0.)
e else

e return Number (remote_cell.get_value()).
o (Note that thanks to the topological sort, remote_cell is evaluated before the current cell).

Sequence Diagram

In this use case, we assume we start with an empty SpreadsheetData object named s1.

[sL:SpreadsheetData| [cell1:SpreadsheetCell| el formula:Formula [celi2:SpreadsheetCell] leell2 formula:Formuld
T

—nit_(1, 1, string) parse_formula()
__init__()
-
(]
set_cell(celll) | set_coords() I
set_spreadsheet(self) get_depend()
evaluate() L
__check_depg¢ndencies()
get_cell(l, 1
; evaluate() s
I—j evaluate() F]
L :
__init__(1,2) T []
get_cell(1, 1) —> celll
celll.get() —> forml I—]
cell2.set(form1) 5 i ..
_init__() r
str() %
L
set_cell(cell2) 1 get_coords() I
set_spreadsheet(self) __get_depend()
evaluate() L
__check_depgndencies()
get_cell(1, 1
: evaluate()
I—T evaluate() I—]
get_cell(1, 2 L_J L
evaluate() r—} evaluate() [_]
L :

The first part illustrates how a cell is added by explicitly typing a formula. Let the variable string holds the typed for-
mula. We first instantiate a SpreadsheetCell object as

celll = SpreadsheetCell(l, 1, string)

In this case, the cell is to be added at coordinates (1, 1). The actual insertion is done by calling

sl.set_cell(celll)

The second part illustrates how the cell just added can be copied into coordinates (1, 2). We first instantiate a new
SpreadsheetCell object without providing a string, and get a reference to the SpreadsheetCell object at coordinates
(1, 1):

cell2 = SpreadsheetCell(1l, 2)

celll = sl.get_cell(l, 1)

To copy celll._ formula into cell2._ formula, we use the get and set methods:
forml = celll.get()

cell2.set (forml)

Registering the new cell in the spreadsheet is done as before:

sl.set_cell(cell?2)

Note how the whole spreadsheet is updated whenever a new cell is added.

