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Overview

1. Software Processes
2. The Process influences Productivity
3. The Rational Unified Process (RUP)

4. Extreme Programming (XP)
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Software Processes

“The Software Engineering process is the total set of Software
Engineering activities needed to transform requirements into software”.

Watts S. Humphrey. Software Engineering Institute, CMU.
http: /fportal .aanarg/cit atio n.cf nid =5 12

Some Software Processes:
e Waterfall model
e Spiral model
e Throwaway/Evolutionary prototyping model
e Incremental/iterative development

e Automated software synthesis
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The Waterfall Model (W. Royce. 1970)
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The Process influences Productivity

THE

MYTHICAL
MAN-MONTH

FREDERICK P. BEROOKS, JR.

“Adding manpower to a late software project makes it later”.

Fred Brooks. The Mythical Man-Month.
htto: /i .exdo.cany/featia re/f esti re.0 001 .him 1
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Why Brooks’ Law ? Team Size.
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Why Brooks’ Law ? Programmer Behaviour.
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Why Brooks’ Law ? Productivity.
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Why Brooks’ Law ? Remaining work.
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The Rational Unified Process (RUP):
Activity Workload as Function of Time

Workflows
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The Rational Unified Process (RUP): Observations

1. Waterfall-like sequence of
Requirements, Design, Implementation, Testing.

2. Not pure waterfall:

e lteration

e Qverlap (concurrency) between activities
3. Testing:

e Regression (test not only newly developed, but also previously
developed code)

e Testing starts before design and coding (Extreme Programming)
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The Rational Unified Process (RUP)
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Extreme Programming (XP)

extreme
ogramming

EMBRACE CHANGE

Kent Beck
Foreword by Erich Gamma
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Extreme Programming (XP) highlights

e User Stories are written by the customers as things that the system
needs to do for them. They drive the creation of acceptance tests.

e The project is divided into lterations.
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Extreme Programming (XP) highlights

Use Class, Responsibilities, and Collaboration (CRC) Cards
to design the system.

Class Name:

Superclasses:

Subclasses:

Responsibilities: Collaborators
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Extreme Programming (XP) highlights

e Code the Unit Test first.

e All code must have Unit Tests; All code must pass all unit tests
before it can be released.
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e Refactor whenever and wherever possible.
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Extreme Programming (XP) highlights

Pair Programming
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