
Object-Oriented Software Design (COMP 304)
7 January 2005

Object-Oriented Software Design
and Software Processes

Hans Vangheluwe

Modelling, Simulation and Design Lab (MSDL)
School of Computer Science, McGill University, Montréal, Canada

Hans Vangheluwe hv@cs.mcgill.ca 1/17



Overview

1. Software Processes

2. The Process influences Productivity

3. The Rational Unified Process (RUP)

4. Extreme Programming (XP)

Hans Vangheluwe hv@cs.mcgill.ca 2/17



Software Processes
“The Software Engineering process is the total set of Software
Engineering activities needed to transform requirements into software”.

Watts S. Humphrey. Software Engineering Institute, CMU.

http://portal.acm.org/cit atio n.cf m?id =75 122

Some Software Processes:

• Waterfall model

• Spiral model

• Throwaway/Evolutionary prototyping model

• Incremental/iterative development

• Automated software synthesis

• . . .

Hans Vangheluwe hv@cs.mcgill.ca 3/17



The Waterfall Model (W. Royce. 1970)

http://www.informatik.uni -bre men. de/g dpa /def /def w/WATERFALL.htm

Hans Vangheluwe hv@cs.mcgill.ca 4/17



The Process influences Productivity

“Adding manpower to a late software project makes it later”.

Fred Brooks. The Mythical Man-Month.

http://www.ercb.com/featu re/f eatu re.0 001 .htm l

Hans Vangheluwe hv@cs.mcgill.ca 5/17



Why Brooks’ Law ? Team Size.

development rate =
nominal_productivity*(1-C_overhead *Nˆ2) *N

Hans Vangheluwe hv@cs.mcgill.ca 6/17



Why Brooks’ Law ? Programmer Behaviour.

Eystein Fredrik Esbensen’s COMP 522 project.

http://www.stud.ntnu.no/˜ eyst einf /fin al. html

Hans Vangheluwe hv@cs.mcgill.ca 7/17



Why Brooks’ Law ? Productivity.

Hans Vangheluwe hv@cs.mcgill.ca 8/17



Why Brooks’ Law ? Remaining work.

Hans Vangheluwe hv@cs.mcgill.ca 9/17



The Rational Unified Process (RUP):
Activity Workload as Function of Time

Hans Vangheluwe hv@cs.mcgill.ca 10/17



The Rational Unified Process (RUP): Observations

1. Waterfall-like sequence of
Requirements, Design, Implementation, Testing.

2. Not pure waterfall:

• Iteration

• Overlap (concurrency) between activities

3. Testing:

• Regression (test not only newly developed, but also previously
developed code)

• Testing starts before design and coding (Extreme Programming)

Hans Vangheluwe hv@cs.mcgill.ca 11/17



The Rational Unified Process (RUP)

Hans Vangheluwe hv@cs.mcgill.ca 12/17



Extreme Programming (XP)

www.extremeprogramming.org

Hans Vangheluwe hv@cs.mcgill.ca 13/17



Extreme Programming (XP) highlights

• User Stories are written by the customers as things that the system
needs to do for them. They drive the creation of acceptance tests.

• The project is divided into Iterations.

Hans Vangheluwe hv@cs.mcgill.ca 14/17



Extreme Programming (XP) highlights

Use Class, Responsibilities, and Collaboration (CRC) Cards
to design the system.

Hans Vangheluwe hv@cs.mcgill.ca 15/17



Extreme Programming (XP) highlights
• Code the Unit Test first.

• All code must have Unit Tests; All code must pass all unit tests
before it can be released.

• Refactor whenever and wherever possible.

Hans Vangheluwe hv@cs.mcgill.ca 16/17



Extreme Programming (XP) highlights

Pair Programming

Hans Vangheluwe hv@cs.mcgill.ca 17/17


