Object-Oriented Software Design (COMP 304)
7 January 2005

Object-Oriented Software Design
and Software Processes

Hans Vangheluwe

® McGill

Modelling, Simulation and Design Lab (MSDL)
School of Computer Science, McGill University, Montréal, Canada

Hans Vangheluwe hv@cs.mcgill.ca

117

Overview

1. Software Processes
2. The Process influences Productivity
3. The Rational Unified Process (RUP)

4. Extreme Programming (XP)

Hans Vangheluwe hv@cs.mcgill.ca 2117

Software Processes

“The Software Engineering process is the total set of Software
Engineering activities needed to transform requirements into software”.

Watts S. Humphrey. Software Engineering Institute, CMU.
http: /fportal .aanarg/cit atio n.cf nid =5 12

Some Software Processes:
e Waterfall model
e Spiral model
e Throwaway/Evolutionary prototyping model
e Incremental/iterative development

e Automated software synthesis

Hans Vangheluwe hv@cs.mcgill.ca 3/17

The Waterfall Model (W. Royce. 1970)

System Intiation
Ylictation ﬂ\l
L Fequirement Analysis
and Speciication
Walickation _\'
t‘— Prelitninary
Design
Werfication _\l
T\‘ Detailed Design
Werfication _\l
T\-— Coding and
Implemettation
Uit Test _\1
T\— ity ticn S
Testing
System Test

~

Walickatiamn

t\— Operation atd
Mairtenance

hitpo: / . rforratik.unt Joe ren. de/g da /oef /oef _wARTFREALL.him

Hans Vangheluwe hv@cs.mcgill.ca 4/17

The Process influences Productivity

THE

MYTHICAL
MAN-MONTH

FREDERICK P. BEROOKS, JR.

“Adding manpower to a late software project makes it later”.

Fred Brooks. The Mythical Man-Month.
htto: /i .exdo.cany/featia re/f esti re.0 001 .him 1

Hans Vangheluwe hv@cs.mcgill.ca 517

Why Brooks’ Law ? Team Size.

work to be T - wothk
completed s completed

\ﬂﬁpmem rate
b

notninal
productity mmber of person overhead

cerlqat rate =
navirel prodctivity* (1-C oerhed N2) N

Hans Vangheluwe hv@cs.mcgill.ca

6/17

Why Brooks’ Law ? Programmer Behaviour.

o { Code o

- Student list _
< IDLE /\-\‘r’ TEACH >
— T

Eacher name_ “'“‘—_:———’"F
{"Anighed! i B
\< STUDY >

—

Ermployed
Fequest

@EMPLOY@= 7 WRITE cv>
§ B I o B

—— —_

Eystein Fredrik Esbensen’s COMP 522 project.
hictpo: /A st ntruro/” gyt einf /fin al. ol

Hans Vangheluwe hv@cs.mcgill.ca

717

Why Brooks’ Law ? Productivity.

250

200

-50

Hans Vangheluwe

i g M\ Il

no extra peoéle
400 more fps per day
1000 more fps per day

L L d ikt SRR
) K)

A T

1 1] 1 1 1
100 150 200 250 300 350

hv@cs.mcgill.ca

400

8/17

Hans Vangheluwe

Why Brooks’ Law ? Remaining work.

60000

50000

40000 K

30000 K

20000 F

10000

nlo extra peoplle
400 more Tps per day
1000 more fps per day

1
50

]
100

L L]] L
150 200 250 300 350

hv@cs.mcgill.ca

400

917

The Rational Unified Process (RUP):
Activity Workload as Function of Time

Workflows

Business Modeling

Requirements

Analysis & Design

Implementation
Test

Deployment

Configuration
& Change Mgmt

Project Management
Environment

Hans Vangheluwe

Phases

Inception

Transition

Elaboration Construction

P

Initial

:F——"h—
Const

Elab #1 | | Elab #2 Const | Const || Tran || Tran

#1 || #2 | oN || o1 | #2

Iterations

hv@cs.mcgill.ca

10/17

The Rational Unified Process (RUP): Observations

1. Waterfall-like sequence of
Requirements, Design, Implementation, Testing.

2. Not pure waterfall:

e lteration

e Qverlap (concurrency) between activities
3. Testing:

e Regression (test not only newly developed, but also previously
developed code)

e Testing starts before design and coding (Extreme Programming)

Hans Vangheluwe hv@cs.mcgill.ca 11/17

The Rational Unified Process (RUP)

Requirements
- Analysis & Design
initial " Planning
Planning Implementation
| Hanagan'sent
\Enﬁrmm
Evaluation A
Deployment

Each iteration

results in an
executable release

Hans Vangheluwe hv@cs.mcgill.ca 12/17

Extreme Programming (XP)

extreme
ogramming

EMBRACE CHANGE

Kent Beck
Foreword by Erich Gamma

Hans Vangheluwe hv@cs.mcgill.ca 13/17

Extreme Programming (XP) highlights

e User Stories are written by the customers as things that the system
needs to do for them. They drive the creation of acceptance tests.

e The project is divided into lterations.

w _"‘1
> 4y [teration @zo0mou
Extrems Fmgramrm n{ N U St
ew User Story,
Release Project Velocity
Plan _
LserStores Unfinished Tasks i
Communicate
[e
Project . [teration Functionality
Next Walocity Tteration Plan Devel : o —a Latest
Iteration Planning cveropment [BugFixes v vergion
Lo =i
Failed Acceptance Q"
Test
bt Day by Day
BUgS Capvright 2000 1. Deavan Wells

Hans Vangheluwe hv@cs.mcgill.ca 14/17

Extreme Programming (XP) highlights

Use Class, Responsibilities, and Collaboration (CRC) Cards
to design the system.

Class Name:

Superclasses:

Subclasses:

Responsibilities: Collaborators

Hans Vangheluwe hv@cs.mcgill.ca 15/17

Extreme Programming (XP) highlights

e Code the Unit Test first.

e All code must have Unit Tests; All code must pass all unit tests
before it can be released.

v o
4 " 4 Collective Code Ownership & Zoom Out
rF .
Extreme Programming
Move People
CRC 0
Around 100%
Simple Cards ! Unit
Design Wie Tests
Complex Change Mead p d
Froblem Pair Hel : asse
Eailed p Run All Unit
Next Task - Unit < Mews Unit Tests
. Pair Create s : Tosts :
or Failed \p & itk B Pair _ =% Continuous E:iTed
Acceptance Test F';?ansited Progrﬁtmming MNew .Integration Acceptance
Test a’;.‘;:\ Tost Functinnality Test
Simple Caomplex
Code Code
Acceptance
. Test
Refactor Dassed
Copynght 200 1. Desnas Wells MerCiIESSly

e Refactor whenever and wherever possible.

Hans Vangheluwe hv@cs.mcgill.ca 16/17

Extreme Programming (XP) highlights

Pair Programming

Hans Vangheluwe hv@cs.mcgill.ca 17/17

