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Overview

1. (Software) Process: definition
2. Various Software Processes

3. The Process Influences Productivity:
Dynamic Process Modelling using Forrester System Dynamics
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Process: A Queueing System

R

= R

nl] nl] nll
Yod Alod Alod —

Arrival

s

Arrival
[IAT distribution]

Hans Vangheluwe

Departure
Queue Cashier
Physical View
—
Departure
Cashier
Queue

[ST distribution]

Abstract View

hv@cs.mcgill.ca

3/22



Event/Activity /Process
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Software Processes

“The Software Engineering process is the total set of Software
Engineering activities needed to transform requirements into

software” .

Watts S. Humphrey. Software Engineering Institute, CMU.

http://portal.acm.org/citation.cfm?id=75122
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Software Processes (see notes)

e Waterfall (Royce)

e \V Model (German Ministry of Defense)

e Prototyping

e Operational Specification

e Transformational (automated software synthesis)
e Phased Development: Increment and lteration

e Spiral Model (Boehm)

e The Rational Unified Process (RUP)

e Extreme Programming (XP)
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The Rational Unified Process (RUP):

Activity Workload as Function of Time

Workflows
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The Rational Unified Process (RUP): Observations

1. Waterfall-like sequence of

Requirements, Design, Implementation, Testing.
2. Not pure waterfall:

e Phased Development (iterative)

e Overlap (concurrency) between activities

3. Testing:

e Regression (test not only newly developed,
but also previously developed code)

e Testing starts before design and coding
(Extreme Programming)
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RUP: Phased Development
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Extreme Programming (XP)

extreme
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EMBRACE CHANGE

Kent Beck

Foreword by Erich Gamma

WWW.extremeprogramming.org
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Extreme Programming (XP) highlights

User Stories are written by the customers as things that the

system needs to do for them. They drive the creation of

acceptance tests.

The project is divided into lterations.
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Extreme Programming (XP) highlights

Use Class, Responsibilities, and Collaboration (CRC) Cards
to design the system.

Class Mame:

Superclasses:

Subclasses:

Responsibilities: Collaborators
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Extreme Programming (XP) highlights

e Code the Unit Test first.

e All code must have Unit Tests; All code must pass all unit tests

before it can be released.
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e Refactor whenever and wherever possible.
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Extreme Programming (XP) highlights
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The Process influences Productivity

MYTHICA L
MAN-MONTH

“Adding manpower to a late software project makes it later”.

Fred Brooks. The Mythical Man-Month.

http://www.ercb.com/feature/feature.0001.html
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Why Brooks' Law 7 Team Size.

work to be o - Witk
completed B completed

\ﬂc}pmem rate
»-

notmnal
productinty nurmber of person C overhead

Model in Forrester System Dynamics

using Vensim PLE (www.vensim.com)

development rate =
nominal_productivity* (1-C_overhead* (N*(N-1)))*N
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Team Size N =5
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Team Size N=3...9
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Optimal Team Size between 7 and 8
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The Effect of Adding New Personnel (FSD model)
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5 New Programmers after 100 days
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5 New Programmers after 100 days
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0 ...6 New Programmers after 100 days
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