Object-Oriented Software Design (COMP 304)

Object-Oriented Software Design
and Software Processes

Hans Vangheluwe

® McGill

Modelling, Simulation and Design Lab (MSDL)
School of Computer Science, McGill University, Montréal, Canada

Hans Vangheluwe hv@cs.mcgill.ca

1/22

Overview

1. (Software) Process: definition
2. Various Software Processes

3. The Process Influences Productivity:
Dynamic Process Modelling using Forrester System Dynamics

Hans Vangheluwe hv@cs.mcgill.ca 2/22

Process: A Queueing System

R

= R

nl] nl] nll
Yod Alod Alod —

Arrival

s

Arrival
[IAT distribution]

Hans Vangheluwe

Departure
Queue Cashier
Physical View
—
Departure
Cashier
Queue

[ST distribution]

Abstract View

hv@cs.mcgill.ca

3/22

Event/Activity /Process

Cust2 Process

A

Cust2 Activityu

Cust2 Activity

A\ 4

A

|
Cust1 Prél)cess

queue

L

pay cashier

A

[
<«

|
Custi AQtivity

\4

pay cashier

\4

<
|
|
|
|
|
|
[
|
|
|

\

Cust1 IArrival
Cust1 Start/pay cashier

i

Cust2 Arrival
Cust2 Start Queueing
|

T

Cust1 End pay cashier
Cust1|Leave
|
Cust2 End Queueing
Cust2 Start pay cashier
|
|

T

Cust2 End Pay cashier
Cust2'Leave
|

!

Hans Vangheluwe

Event

hv@cs.mcgill.ca

\ 4

4/22

Software Processes

“The Software Engineering process is the total set of Software
Engineering activities needed to transform requirements into

software” .

Watts S. Humphrey. Software Engineering Institute, CMU.

http://portal.acm.org/citation.cfm?id=75122

Hans Vangheluwe hv@cs.mcgill.ca

5/22

Software Processes (see notes)

e Waterfall (Royce)

e \V Model (German Ministry of Defense)

e Prototyping

e Operational Specification

e Transformational (automated software synthesis)
e Phased Development: Increment and lteration

e Spiral Model (Boehm)

e The Rational Unified Process (RUP)

e Extreme Programming (XP)

Hans Vangheluwe hv@cs.mcgill.ca 6/22

The Rational Unified Process (RUP):

Activity Workload as Function of Time

Workflows

Business Modeling

Requirements

Analysis & Design

Implementation
Test

Deployment

Configuration
& Change Mgmt

Project Management
Environment

Hans Vangheluwe

Phases

Elaboration

Construction

Const || Const | Const
Initial || Elab #1/ | Elab #2/| Con || |
Iterations

hv@cs.mcgill.ca

#2

7/22

The Rational Unified Process (RUP): Observations

1. Waterfall-like sequence of

Requirements, Design, Implementation, Testing.
2. Not pure waterfall:

e Phased Development (iterative)

e Overlap (concurrency) between activities

3. Testing:

e Regression (test not only newly developed,
but also previously developed code)

e Testing starts before design and coding
(Extreme Programming)

Hans Vangheluwe

hv@cs.mcgill.ca 8/22

RUP: Phased Development

Requirements
o Analysis & Design
; ~ Planni _x_"_f S5
PII:nHl:;'llg - 2 H Implementation
: 26 Management
Environment
\ B
Evaluation e :
Deployment
Each iteration
results in an
executable release
Hans Vangheluwe hv@cs.mcgill.ca

9/22

Extreme Programming (XP)

extreme
ogrammm g

EMBRACE CHANGE

Kent Beck

Foreword by Erich Gamma

WWW.extremeprogramming.org

Hans Vangheluwe hv@cs.mcgill.ca 10/22

Extreme Programming (XP) highlights

User Stories are written by the customers as things that the

system needs to do for them. They drive the creation of

acceptance tests.

The project is divided into lterations.

v _"'1
P 4 - ' Iteration @Zoom Out
Extreme Progra miming N U St
ew User Story,
Release Project Velocity
Plan _
LsarSiares Unfinished Tasks i
Communicate
[ey
Project ; Iteration Functionality
Next Yelacity Iteration Plan Devel : ot —a [atest
Iteration Planning cve opment L. BugFixes v 37eraion
[=i
Failed Acceptance ;\
Test
bl Dy by Day
BugS Capvnght 2000 1. Dogvan Wells

Hans Vangheluwe hv@cs.mcgill.ca

11/22

Extreme Programming (XP) highlights

Use Class, Responsibilities, and Collaboration (CRC) Cards
to design the system.

Class Mame:

Superclasses:

Subclasses:

Responsibilities: Collaborators

Hans Vangheluwe hv@cs.mcgill.ca 12/22

Extreme Programming (XP) highlights

e Code the Unit Test first.

e All code must have Unit Tests; All code must pass all unit tests

before it can be released.

v 3
P 4 " 4

Extreme Programming

Collective Code Ownership

Move People

@&} Foom Qut

CRC a
Card Around 100%
i Aren L Unit
imple
Design changs | | Tests
e Pair| | Meed Passed
Prapiem N Help Run All Urit
Next Task pay (peate Unit 1 Mew Unit Tests
or Failed __ Us ., _Test Pair _™%%, Continuous |Run
aUnltqﬁ M c— : Failed
Acceptance Test %Sns;te PI‘OgI‘JE‘ﬂIlII]lI]g new Integration Acceptance
Test M\ Tost Functionality Test
Simple Complex
Code Code
Acceptance
i Test
Refactor
;i Paszzed
Caopvnght XK 1. Domvas Wells MEI'CIIESSIY

e Refactor whenever and wherever possible.

Hans Vangheluwe

hv@cs.mcgill.ca

13/22

Extreme Programming (XP) highlights

Hans Vangheluwe

Slides Pair Desk

‘ Monitor Bridge

| 30 00 |

|
Keyboard Tray

T8 000

Front View —

|
|
|
|
I
I
|
|
|

Slides Pair Desk

Rolling
Manitor Bridge

3B 000"

Pair Programming

www.charm.net/ jriley/pairall

hv@cs.mcgill.ca

.html

14/22

The Process influences Productivity

MYTHICA L
MAN-MONTH

“Adding manpower to a late software project makes it later”.

Fred Brooks. The Mythical Man-Month.

http://www.ercb.com/feature/feature.0001.html

Hans Vangheluwe hv@cs.mcgill.ca

15/22

Why Brooks' Law 7 Team Size.

work to be o - Witk
completed B completed

\ﬂc}pmem rate
»-

notmnal
productinty nurmber of person C overhead

Model in Forrester System Dynamics

using Vensim PLE (www.vensim.com)

development rate =
nominal_productivity* (1-C_overhead* (N*(N-1)))*N

Hans Vangheluwe hv@cs.mcgill.ca

16/22

Team Size N =5

e =T] SOFTWARE PROGRESS NO NEW O x|
SOFTWARE PROGRESS NO NEW

&00

5““\. /

i 50 100 150 200 250 300 350 400 0 450 0 300
Time (Day)

work to be completed :n 5
development rate :n_ 5
work completed in 5

Hans Vangheluwe hv@cs.mcgill.ca 17/22

Team Size N=3...9

el b=1gl=l Graph for work to be completed . [=[p]
Graph for work to be completed

&00

449 95

29556

14554

-0.08

0 50 100 150 200 250 300 350 400 450 500

wrord; to be comvpleted (D n 3
wromds o be comvpleted Cr 4
wrord; to be comvpleted n @
works to be corrpleted n
wrord; to be comvpleted 1 T
wromds to be completed Cr 6
wrork; to be corrpleted (n 5

Optimal Team Size between 7 and 8

Hans Vangheluwe hv@cs.mcgill.ca 18/22

The Effect of Adding New Personnel (FSD model)

wotls to be

Sof work
cotnpleted e -
wvelopment rate completed
i overhead e i
\ progratting
overhead ﬂomiﬂ_ﬂ
4 productity
U PeErson
b

(= MMNEW | mumexp —Menum exp working

mject new assirlation

mun trater

development rate = nominal_productivityx*

(1-C_overhead* (N*(N-1)))* (1.2*num_exp_working + 0.8%num_new)

Hans Vangheluwe hv@cs.mcgill.ca 19/22

5 New Programmers after 100 days

e =iEicl 5 NEVW PERSONNEL 1 m|

5 NEW_PERSONNEL 1

0.4
&00

&00

0.2
300
300

-0.0004

0 200 400 600 200 1000 1200
Time (Day)

1400

1600

1800

2000

development rate 1n 5

wotk completed 'n 5

wotlt to be completed :n 5

Hans Vangheluwe

hv@cs.mcgill.ca

20/22

5 New Programmers after 100 days

SYISTEl-] 5 NEW PERSONNEL 2 [=[Fq
5 NEW_PERSONNEL 2
: | 7

(]

S|

]

0 200 400 00 800 1000 1200 1400 1600 1800 2000
Time (Day)

i new 1 9
futn EXp 0 S
mum actual programming (n 5

Hans Vangheluwe hv@cs.mcgill.ca 21/22

0 ...6 New Programmers after 100 days

e B=1El°] Graph for work to be completed . [=[kY
Graph for work to be completed
600
445 59
300
149.92 aol
l--‘-\-“h-‘-""‘-\-__‘l_\-
-0.02

0 200 400 600 200 1000 1200 1400 1600 1800 2000
Time (Day)

wotrk to be completed :n 0
worle to be completed i n 2
wotrk to be completed :n 5
wotl to be completed ' n_ 6

Hans Vangheluwe hv@cs.mcgill.ca 22/22

