' The Software Process

Comp-304 : The Software Process
Lecture 1

Alexandre Denault
Original notes by Hans Vangheluwe
Computer Science
McGill University
Fall 2006




Process : Queuing System

o fefefett) —

Departure

Arrival Oueue Cashier

Physical View
—_—

Departure

Arrival Cashier

. : . Queue . . .
[IAT distribution] [ST distribution]

Abstract View




Event/Activity/Process
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' Software Process

“The Software Engineering process is the total set of
Software Engineering activities needed to transform
requirements into software.”

Watts S. Humphrey. Software Engineering Institute, CMU.
http://portal.acm.org/citation.cfm?id=75122
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' Activities in the process?

B |mplementation
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' Activities in the Process

m Requirements Gathering / Specification
B Analysis & Design

B |mplementation

® Environment Setup

® Training

B Testing

B Deployment

B Maintenance

B Project Management




' Software Processes

m \Vatefall




' Software Processes

m \Waterfall (Royce)

® \/ Model (German Ministry of Defense)

B Prototyping

®m Operational Specification

B Transformational (automated software synthesis)
B Phased Development: Increment and lteration

m Spiral Model (Boehm)

® The Rational Unified Process (RUP)

m Extreme Programming (XP)




Waterfall

B Requirement Analysis

m System Design

B Program Design

®m Coding

® Unit & Integration Testing
m System Testing

B Acceptance Testing

®m Operation & Maintenance
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The Rational Unified Process (RUP)

Phases
Disciplines | | Inception Elaboration Construction Transition
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' RUP : Observations

m \Vaterfall-like sequence of
+ Requirements, Design, Implementation, Testing.

®m Not pure waterfall
+ Phased Development (iterative)
« QOverlap (concurrency) between activities
B Testing
+ Regression (test not only newly developed, but also previously

developed code)

+ Testing starts before design and coding



' Agile Manifesto

® Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale.

B The most efficient and effective method of conveying
information to and within a development team is face-to-
face conversation.

B The best architectures, requirements, and designs
emerge from self-organizing teams.

B At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behavior
accordingly.



' Extreme Programming (XP)

extreme
ogramming

explained

EMBRACE CHANGE

Kent Beck
Foreword by Erich Gamma

WWWw.extremeprogramming.org
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the system needs to do for them.

XP Process

m User Stories are written by the customers as things that

« They drive the creation of acceptance tests.
B The project is divided into Iterations.
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' XP Highlights

®m Code the Unit Test First
«  Write the simplest code that succeed the test

m Make frequent small releases
B Pair Programming
« Two programmers, 1 desk

m Refactor Mercilessly
+ Because less code is easier to maintain




Collective Code Ownership
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Pair Programming Workstation
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