' The Software Process

Comp-304 : The Software Process
Lecture 1

Alexandre Denault
Original notes by Hans Vangheluwe
Computer Science
McGill University
Fall 2006

Process : Queuing System

o fefefett) —

Departure

Arrival Oueue Cashier

Physical View
—_—

Departure

Arrival Cashier

. : . Queue . . .
[IAT distribution] [ST distribution]

Abstract View

Event/Activity/Process

Cust2 Process

r" >
' Cust2 Activity Cust2 Activity |
- < - >
I queue | pay cashier I
I I
I : I
Custi Prbcess | |
- ' > |
| I |
. I
| Cust1 Adtivity | |
B2 F— .'I I
| pay cashier | |
| I | I
I | , I
Cust1l lﬂrrival | Cust1 End pay cashier |
Custl Start'pay cashier : Cust1|Leave :
I
Cust2 £+rri'u.ral Cust2 End Queueing Cust2 End l ay cashier
Cust2 Start 'Queueing Cust2 Start pay cashier Cust2'Leave

I I

! !

Event

' Software Process

“The Software Engineering process is the total set of
Software Engineering activities needed to transform
requirements into software.”

Watts S. Humphrey. Software Engineering Institute, CMU.
http://portal.acm.org/citation.cfm?id=75122

y

' Activities in the process?

B |mplementation
. nan

' Activities in the Process

m Requirements Gathering / Specification
B Analysis & Design

B |mplementation

® Environment Setup

® Training

B Testing

B Deployment

B Maintenance

B Project Management

' Software Processes

m \Vatefall

' Software Processes

m \Waterfall (Royce)

® \/ Model (German Ministry of Defense)

B Prototyping

®m Operational Specification

B Transformational (automated software synthesis)
B Phased Development: Increment and lteration

m Spiral Model (Boehm)

® The Rational Unified Process (RUP)

m Extreme Programming (XP)

Waterfall

B Requirement Analysis

m System Design

B Program Design

®m Coding

® Unit & Integration Testing
m System Testing

B Acceptance Testing

®m Operation & Maintenance

' V Model

Operation and
Maintenance

Requirements - /
Analysis I

o~ - Accep?ance
Testing

System Design < /
\ - » System Testing
Program Design <=~ — . Unit & Integration

\ Testing

Prototyping

Build Prototype \

Customer Final
Feedback / Test Product
Gathering /
Requirements

y

Review

Determine

objectives,
alternatives,
constraints

Commitment

A

Cumulative
cost

SR

Progress

through
steps

Risk
analysis

Risk
analy- | Prototype

sis
| ——-L
1 —

Boehm Spiral

Evaluate alternatives,
identify, resolve risks

Risk
analysis

Rigk
analysis

Operational
3 prototype

partition

Requirements plan

life-cycle plan Concept of

operation

Develop-
ment plan |

Requirements
validation

Integration
and test
plan

Design validation
and verification

Implementation] A°
| te

Plan next phases |

Software

requirements / Software Smgimd
product esign
design

ceptance I
st

—_Simulations, models, benchmarks
———

'_‘-'--._._‘_‘__

.

—

T—-

. I Code
| Unit I
|test |

Integration
| and test

Develop, verify
next-level product

The Rational Unified Process (RUP)

Phases
Disciplines | | Inception Elaboration Construction Transition

Business Modeling
Requirements

Analysis & Design

Implementation
Test
Deployment

Configuration
& Change Mgmt

Project Management
Environment

Elab #1 | | Flab #2|| Const || Const | Const || Tran
b w1 w2 Frl] #1

Iterations

' RUP : Observations

m \Vaterfall-like sequence of
+ Requirements, Design, Implementation, Testing.

®m Not pure waterfall
+ Phased Development (iterative)
« QOverlap (concurrency) between activities
B Testing
+ Regression (test not only newly developed, but also previously

developed code)

+ Testing starts before design and coding

' Agile Manifesto

® Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale.

B The most efficient and effective method of conveying
information to and within a development team is face-to-
face conversation.

B The best architectures, requirements, and designs
emerge from self-organizing teams.

B At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behavior
accordingly.

' Extreme Programming (XP)

extreme
ogramming

explained

EMBRACE CHANGE

Kent Beck
Foreword by Erich Gamma

WWWw.extremeprogramming.org

y

the system needs to do for them.

XP Process

m User Stories are written by the customers as things that

« They drive the creation of acceptance tests.
B The project is divided into Iterations.

w "'1
> 4 - [teration &Zoom Out
Extreme Frnurar'nmm{i
New Uszer Story,
Release Project Velocity
Plan |
Jser stories LInfinished Tasks Learn and
Communicate
P e
Froject i lteration Functionality
Next Veloeity Iteration Plan__ Devel ; o —a Latest
Iteration Planning CVEOPHIEN | Buo Fixes » yergion
L “
Failed Acceptance ;\“
Tests
Day by Day
Eugs Copvnght 2000 J. Deavan Wells

' XP Highlights

®m Code the Unit Test First
« Write the simplest code that succeed the test

m Make frequent small releases
B Pair Programming
« Two programmers, 1 desk

m Refactor Mercilessly
+ Because less code is easier to maintain

Collective Code Ownership

v oY
P 4 - Collective Code Ownership @gZoom out
Extreme Fruurammm{:
Move People
CRC Around 100%
Cards . Unit
Simple
Diesign Change Wi Tests
Complex pair | | Meed Passed
Problerm il Help Run All Unit
Next Task par (peate Unt v New Uit Tests
- Test : Bsts : =
or Failed Up . o Unit Pair _ === Contimuons F:i?ed
Acceptance Test oot Prngrammmg new Lntegration |acceptance
) fil Functionality Test
Test @ Test
Simple Complex \
Code Code
Acceptance
¥ Test
Reff_;wtnr Paszed
Copvrnght X0 1 Domvan Wells MEI‘EIIESSI}F

y

Pair Programming Workstation

Slides FPair Desk

\ Monitor Bridge

= ==
'-—'-'--ﬁ LA —_— |
E = |

i 0| T

Feyboard Tray

Frant Wiew

T

Slides Pair Desk

Pair Programming
www.charm.net/ jriley/pairall.html

