Behavior Diagrams

Comp-304 : Behavior Diagrams
Lecture 13

Alexandre Denault
Original notes by Hans Vangheluwe
Computer Science
McGill University
Fall 2007

' Behavior Diagrams

m Structure Diagrams focused on describing the static
composition of components.

® |nteraction Diagrams focused on describing the
communication between the various components.

®m Behavior Diagrams focus on describing the behavior of
+ the whole application
+ a particular process in the application
+ a specific component

y

' Different Formalism

® \We will look at different formalisms:
+ Finite State Automaton
+ Activity Diagram
+ State Charts

' Finite State Automaton

m A finite automaton is the set of
+ Set of states
« Input alphabet
+ Rules for changing state
« Start State
« Accept State

Formal definition, from Sipser's Theory of Computation

y

Example : Automatic Door

T

' Specification

B The automatic door can be opened or closed.
B The sensor at the top of the door can send 4 types of
signals:
« Nobody : There is nobody in front or behind the doors.
« Front: There is somebody in front of the doors.
« Behind: There is somebody behind the doors.
« Both: There is somebody in front or behind the doors.

B The door behaves as follows:

« The door opens when somebody is in front of the doors.

« The door closes only when nothing is in front or behind the
doors.

B The door starts off as closed. I

' Specification

B The automatic door can be opened or closed. (state)
B The sensor at the top of the door can send 4 types of
signals: (input alphabet)
« Nobody : There is nobody in front or behind the doors.
« Front: There is somebody in front of the doors.
« Behind: There is somebody behind the doors.
« Both: There is somebody in front or behind the doors.

B The door behaves as follows: (transition)

« The door opens when somebody is in front of the doors.

« The door closes only when nothing is in front or behind the
doors.

B The door starts off as closed. (start) I

' Diagrams

N athing

Frgnt. Beind,
Eehimj,Eﬂth[Cpen) (E"jﬁe‘jj Nathing

/r Frant, Both /r

Class Diagram of FSA

y FSA
states 1
in transitions
> State <y
0.7 | -name: String o> npE event
init §tate name is uﬂique aut Transitian K
[‘5 <‘|\, transitions 0.* | guard: String -
]
|nitstate Endsiate v

Aﬂ} outpuf event 1} Event

' Output and Guards

m \We can extend typical FSA by adding the notions of
output and guards.

+ Both of these additions can be found on the transition arrow.

B \When a transition is triggered, it can send an output
event to another component.

®m Conditions can be imposed on transitions by adding
guards.

« A transition can then only fire if the transition is true.

y

Example

Mathing / closeDoar()

Frgnt. Beind,
Behingl, Bath (COpen) (Closed) N athing
| T

Frant, Both [time > 8 and < 21] / openDoaor()

'Non Deterministic vs Deterministic

® A non-deterministic FSA (NFA) is a finite state
automaton where there exists a least one state where
multiple transitions can be triggered by the same event.

® Since all NFA can be transformed into a DFA (although
this might cause a combinatorial explosion), we mostly
consider the case of DFAs.

y

' Equivalence with FSA

®m Regular expressions and finite state automaton are
equivalent in the descriptive power.

« Any FSA can be converted into a regular expression.
+ Any regular expression can be converted into a FSA.

y

' What is a Regular Expression?

m A text pattern that describes or matches a set of strings,
according to certain syntax rules.
®m Fxamples of regular expressions include:
+ Text starting with the letter “a” and finishing with the letter “z".
+ Text with at least one number, but not starting with the letter “a”
or “b”.
« Text with a letter repeated three times in a row.
+ Text contains the string “abc” exactly three times.

y

' RegEx Constructs

® Most Regular Expression Language offer the following
constructs.

+ Alternation: john|bob

« Grouping: b(ola)b

« Quantification:
> ?:00r1:(514)?555-5555
> *:0 or more : abc*
> +:1 or more : abc+

From RegEx to FSA

ab((cd)|(ed))

Solution

From FSA to RegEx

-
G G
Con P

ttttt

Solution

a+b(c|df*)(eh|gi)

= The Bigger Picture

A ah d:0 | eE ‘
| I |
|
|
| @ Regular Expressions;
b 1
N I |
B C | |
I I |
L~ 1 1
1

\ GENERATE CODE / @

class A:
del it (self):

class D:
det __init__iselfy

class E;
def _init_ (self)

class MyScanner Scanner):
(Client 2) A& connection Tequest is sent to chat rocm 1. def init (self, stream):

v4
7

a0 (e reon 1) Reesived coveeetion request froen chient 7

ICE LIBR 2

VERIFY

&

OK?

®

From Requirement

REQUIREMENT

®

R

® Regular Expressions;

|
L= J -
I | B I i [s R[] # b CL (a0 RS ()
B C l | R[] ICR 120 RER
l |
1]
|

Y ﬂi ®
\ GENERATE CODE / ®
Il

51

\ GEMERATE CODE / @

51

class A:
def it (=ell):

Cclass D
det _ init_ [selfh:

class E;

d.n:::r'r__mil_[:tlr}:
®

class MyScanner Scanner):

o |Client 2) A& connectiom Teques is sent to chat reom L. def it (self stream):
[CLZV RS | -

d4i (Chan neoin | Recaved aoveecetion request froen elesin 7

[CRLIER 2

N
A

&

OK?

To Verification

