
Adapter

Comp-304 : Adapter
Lecture 23

Alexandre Denault
Computer Science
McGill University

Fall 2007



Transactions

■ Atomicity : Either all the tasks in the transactions are 
done, or none of them are.

■ Consistency : You application will be at a legal state at 
the beginning and the end of the transaction.

■ Isolation : The tasks done in the transaction will be 
isolated from other operations.

■ Durability : Once the transaction is completed, it will 
persist and cannot be undone.



Command

■ We finished the command pattern pretty fast last class.
■ Lets take a minute to review it.



Designing a Simple Game Engine

■ Want to design a simple 3D game engine.
■ Lets call it, the Blue Game Engine.
■ In this simple engine, every object displayed on the 

screen is an instance of a BlueGameObject.



BlueGameObject



Implementation Concerns

■ So far, implementing the most of the BlueGameObject is 
fairly straight forward using any 3d library
 Draw geometric shapes in 3d is easy.

■ But what about the TextBox?
 GUI elements are inherently difficult to develop in 2D/3D game 

libraries.
 Most game companies will buy specialized tools for this.



Introducing GreenGUI

■ Now, lets introduce a new library, GreenGUI, which 
specializes in developing GUI systems for 3D engines.

■ Like all GUI system, GreenGUI does have a class to 
does text boxes.

■ However, GreenGUI obviously has a different API.



GreenTextBox as a BGO



What to do?



Inheritance



Composition



Adapter

■ Convert the interface of a class into another interface 
clients expect. Adapter lets classes work together that 
couldn't otherwise because of incompatible interfaces.

■ Aka: Wrapper



Motivation

■ Sometimes a toolkit or class library can not be used 
because its interface is incompatible with the interface 
required by an application.

■ We can not change the library interface, since we may 
not have its source code.

■ Even if we did have the source code, we probably should 
not change the library for each domain-specific 
application.



Class Adapter



Object Adapter



When to use?

■ Use the Adapter pattern when
 You want to use an existing class, and its interface does not 

match the one you need
 You want to create a reusable class that cooperates with 

unrelated classes with incompatible interfaces



Implementation Issues

■ How much adapting should be done?
 Simple interface conversion that just changes operation names 

and order of arguments
 Totally different set of operations

■ Does the adapter provide two-way transparency?
 A two-way adapter supports both the Target and the Adaptee 

interface. It allows an adapted object (Adapter) to appear as an 
Adaptee object or a Target object



FengGUI

■ Now, for a more formal example of Adapter pattern in 
action.

■ FengGUI is a Java OpenGL library for drawing GUI's
■ It is compatible with all the major tool set:

 JOGL
 LWJGL
 Xith 3D
 JMonkey



Input Handling in FengGUI

■ Since FenGUI is a GUI tool set, it needs to know about 
keyboard and mouse input.

■ The main class in FengGUI is Display.



JOGL

■ The JOGL project hosts the development version of the 
Java™ Binding for the OpenGL® API (JSR-231).

■ It is designed to provide hardware-supported 3D 
graphics to applications written in Java. 

■ JOGL provides full access to the APIs in the OpenGL 2.0 
specification as well as nearly all vendor extensions, and 
“integrates” with the AWT and Swing widget sets.



Dealing with JOGL

■ JOGL functions over AWT, thus uses the regular 
MouseListener for mouse input.



Adapter

public class FengMouseListener implements MouseListener {
Display display;

mousePressed(e: MouseEvent) {
this.display.fireMousePressedEvent(e.getX(), e.getY(),

e.getMouseButton(), e.getClickCount());
}
mouseReleased(e: MouseEvent) {

this.display.fireMouseReleasedEvent(e.getX(), e.getY(),
e.getMouseButton(), e.getClickCount());

}
mouseClicked(e: MouseEvent) {}
mouseEntered(e: MouseEvent) {}
mouseExited(e: MouseEvent) {}

}


