Comp-304 : Adapter
Lecture 23

Alexandre Denault
Computer Science
McGill University
Fall 2007

Adapter

' Transactions

B Atomicity : Either all the tasks in the transactions are
done, or none of them are.

B Consistency : You application will be at a legal state at
the beginning and the end of the transaction.

B |solation : The tasks done in the transaction will be
iIsolated from other operations.

B Durability : Once the transaction is completed, it will
persist and cannot be undone.

y

' Command

m \We finished the command pattern pretty fast last class.
m | ets take a minute to review it.

y

' Designing a Simple Game Engine

B \Want to design a simple 3D game engine.
m | ets call it, the Blue Game Engine.

B |n this simple engine, every object displayed on the
screen is an instance of a BlueGameObject.

y

BlueGameObject

BlueGameObject
setFasition(x: float, v float, z: float)
ratatex(angle: float)
rotatey(angle: float)
ratateZ{angle: float)
scale(x: float, y: float, z: float)
draw (void)

A

BlueGameSquare BlueGamePaly BlueGame3DMadel

BlueGameCube BlueGameTexthox

' Implementation Concerns

B 5o far, implementing the most of the BlueGameOQObiject is
fairly straight forward using any 3d library

« Draw geometric shapes in 3d is easy.

B But what about the TextBox?

+ GUI elements are inherently difficult to develop in 2D/3D game
libraries.

+ Most game companies will buy specialized tools for this.

y

' Introducing GreenGUI

® Now, lets introduce a new library, GreenGUI, which
specializes in developing GUI systems for 3D engines.

m | ke all GUI system, GreenGUI does have a class to
does text boxes.

m However, GreenGUI obviously has a different API.

y

GreenTextBox as a BGO

BlueGameOhject GreenTextBox
setPosition(x: float, v float, z: float) mave(v: Vectar)
rotatex(angle: float) rotate(m: Matrix)
rotate(angle: float) scalefv: Vectar)
rotateZ{angle: float) setText(s: String)
scale(x: float,y: float, z: float) setStyle(s: Style)
draw(vaid) render{vaid)

What to do?

Inheritance

Bluelsamelbject

GreenTexiBox

setPosition(x: float, . float, z: float)
ratatex(angle: float)

ratate{angle: float)

rotateZ(angle: float)

scale(x: float,y: float, z. float)

maove(v: Vectar)
ratate(m: Matrix)
scale(v: Vector)
setText(s: 5ting)
setstyle(s: Style)
render{void)

draw(void)

BlueGameTexiB ax

BlueGameUbject

setPosition(x: float, v: float, z: float)
ratatex(angle: float)

ratatey(angle: float)

rotateZ{angle: float)

scale(x: float,y: float, z: float)

draw(void)

Composition

GreenTextBox

BlueGameTextBax (4
textBox: GreenTextBox

mave(y: Vectar)
ratate(m: Matrix)
scale(v: Vectar)
setTexi(s: 5tring)
setsStyle(s: Style)
render(void)

' Adapter

m Convert the interface of a class into another interface
clients expect. Adapter lets classes work together that
couldn't otherwise because of incompatible interfaces.

B Aka: Wrapper

y

' Motivation

B Sometimes a toolkit or class library can not be used
because its interface is incompatible with the interface
required by an application.

® \We can not change the library interface, since we may
not have its source code.

®m Fven if we did have the source code, we probably should
not change the library for each domain-specific
application.

y

' Class Adapter

Client Target Adaptee
request() doRequest()
i i
Adapter

request() {doRequest())

Client

Object Adapter

Target

request()

Fa

Adapter

request() {adaptee doRequest()}

Adaptee

doRequest()

y

' When to use?

B Use the Adapter pattern when

« You want to use an existing class, and its interface does not
match the one you need

« You want to create a reusable class that cooperates with
unrelated classes with incompatible interfaces

y

' Implementation Issues

B How much adapting should be done?

« Simple interface conversion that just changes operation names
and order of arguments

« Totally different set of operations

B Does the adapter provide two-way transparency?

« A two-way adapter supports both the Target and the Adaptee
interface. It allows an adapted object (Adapter) to appear as an

Adaptee object or a Target object

' FengGUI

® Now, for a more formal example of Adapter pattern in
action.

® FengGUI is a Java OpenGL library for drawing GUI's

B |t is compatible with all the major tool set:
« JOGL
« LWJGL
« Xith 3D
+ JMonkey

y

Input Handling in FengGUI

B Since FenGUI is a GUI tool set, it needs to know about
keyboard and mouse input.

® The main class in FengGUI is Display.

Display

+Display(binding: Binding)
+HireKeyPressedBvent(keyValue: char, keyClass: Key) boolean
+ireKeyReleasedEvent(keyWalue: char, keyClass: Key): boolean
+ireMouseDraggedEvent(mousex: int, mousey: int,
mouseButton: MouseButton); boolean
+HireMouseMovedEventdisplayi: int, displayy displayy): boolean
+ireMousePressedEvent(mousex: int, mousey: int,
mouseButton: MauseButton, clickCount; int); boolean
+HireMouseReleasedEvent(mouseX: int, mouseY: int,
mouseButton: MaouseButton, clickCount; int), boolean
+HireMouseWheel(mousex: int, mouseY’ int, up: boolean) boolean

' JOGL

® The JOGL project hosts the development version of the
Java™ Binding for the OpenGL® API (JSR-231).

® |t is designed to provide hardware-supported 3D
graphics to applications written in Java.

m JOGL provides full access to the APIs in the OpenGL 2.0
specification as well as nearly all vendor extensions, and
“Integrates” with the AWT and Swing widget sets.

' Dealing with JOGL

m JOGL functions over AWT, thus uses the regular
MouseListener for mouse input.

ginterfaces
Mouselistener

+mouseClicked({e: MouseEwvent)
+mouseEntered({e: MouseEwvent)
+maouseExited(e. MauseEvent)
+maouseFressed(e. MouseEvent)
+mouseReleasedie. Mousebvent)

Adapter

public class FengMousel.istener implements MouselListener {

Display display;

mousePressed (e: MouseEvent) {
this.display.fireMousePressedEvent (e.getX (), e.getY (),
e.getMouseButton (), e.getClickCount());
}
mouseReleased (e: MouseEvent) {
this.display.fireMouseReleasedEvent (e.getX (), e.getY (),
e.getMouseButton (), e.getClickCount());
}
mouseClicked (e: MouseEvent) {}
mousekEntered (e: MouseEvent) ({}

mouseExited (e: MouseEvent) {}

