Composite

Comp-304 : Composite
Lecture 24

Alexandre Denault
Original notes by Hans Vangheluwe
Computer Science
McGill University
Fall 2007

3D Room

Scene Graphs

Universe
/ \
Room 1 Room 2
N .
Desk Bed Wardrobe
Books Lamp Doors Drawers

y

' Hierarchy

B Elements are place in a hierarchical structure for
efficiency reasons.

« Makes culling faster and easier.

B |n such a structure, we want to manipulate the composite
nodes and the leaf nodes in a similar way.

+ Bounding Boxes
« Scaling, Rotation, Translation

y

' Composite Pattern

B Compose objects into tree structures.

m Allow for uniform treatment of
« Atomic/primitive Objects
+ Composite Objects

' Composite Pattern

B Compose objects into tree structures to represent part or
whole hierarchies.

B Composite lets clients treat individual objects and
compositions of objects uniformly. This is called
recursive composition.

y

Scaling

Universe
Scale (0.5) — / \
Room 1 Room 2
Desk Bed Wardrobe
Books Lamp Doors Drawers

y

' Scaling Explained

® Clients can use the scale command on any node, sub-
components will also be scaled.

B The user doesn't need to worry about the type of object
he is dealing with.

B To make this work, all components must implement the
scale command.

+ Must have the same interface.

y

Class Diagram

Client Component

+operationf...)

+add(compr Component)
+remove(comp: Component)
+getChildrenfcomp: Component) <&

? [complete, disjoint}

chilgdren

| eaf Composite

+operation(...) +operation(...)

+add({comp: Caomponent)
HeEmave(caomp: Companent)
+getChildren{comp: Compaonent)

' Consequences

B Makes the client simple.

« Client doesn't need to check if it's dealing with a composite or a
leaf.

B Fasier to add new kinds of components.
« Either composite or leaves.

B Makes your design overly general.
« This has the disadvantage of making it difficult to control which

components can be part of a composite.

+ You will most likely need to do runtime checks.

' Problem?

B \We already have problems with this diagram.

m Component is an abstract method, so leaf must
implement the add/remove methods.

B But does leaf need those methods?

m Simplest solution is to raise an exception when those
methods a called.

- Bad design!

y

Class Diagram, Take 2

Zlient

Componert

+operation(...)
+addicomp Compaonent)
Hremove(comp. Component)

+getChildrenicomp; Component) % a

? [complete, disjoint)

Leaf

Composite

+operation(...)

+add{comp:. Component) {raises Exception}

+operation(...)
+add{comp. Component)

+remove(camp: Companent) {raises Exception} +remove(camp: Companent)
+getChildren{comp: Component) { returns null} +getChildren({comp: Component)

chil

lren

' Imp. Conc.: Add/ Remove

® So, where should the add/remove methods be declare?

y

' Add/Remove

B So, where should the add/remove methods be declare?

m |[f we declare it in component (component-level), then the
leafs will have meaningless methods.
- Bad Design!

B |[f we declare the methods only in the composite
(composite-level), then we break the abstraction.

+ Client needs to know the difference between composite and
leaf.

®m \Who keeps references to the children, the component or
the composite?

« At the component level, this would be bad design.
+ In addition, there is a memory penalty since leaf will also have

a list for children. '

Safety vs Transparency

Component Component
+operation(...) +operation...)
+add{comp: Component)
+remave(comp: Companent)
<& +getChildren(comp: Companent) [<&
iamplete, disjaint chitbiren ?l:u:umplete, disjaint chibiren
Leaf Composite Leaf Composite
+operation(...) +operation(...) +aperation(...) +operation(...) I

+add(comp: Component)
+remove(comp: Component)
+getChildren(comp: Component)

Safety Transparency

y

Multiple Parents

® \What happens if a child has multiple parents?

Scale (0.5) — /\

Room 2

Universe

Room 1

NN

Desk

A

Door

Books

Lamp

Wardrobe

— O\

Doors

Drawers ‘

' Other Implementation Concerns

B Child Ordering : if we draw shapes, we need to know
which shape is above other shapes.

+ We can just store the children in order, but we need the proper
data structure for that.

®m Caching children lookup: Each composite caches it's
number of children.

« If a new composite is added, we can easily compute the
number of children.

« Again, memory vs speed.
® \Who should delete?
« Sending delete to a component, should we cascade delete or

not.

Example

Inventories

& Flayer Inventary

i

Capacity | 0/16 Weight 0.0/8.0

Capacity © 0/9 Weight 0.0/100.0

WorldObjects

WaorldObject

getid(): Id
getP asition(): Paosition
getShape() Shape —
getlame(): Name
is\visible(): boolean
addObject(w o WorldObject)
remaveCbjectiwa: WarldObject) ro
getObjects() Set<WorldObject>

1

termObject PlayerObject

Which cohesion problem can be found here?

Bob

T

Wallet

i

Currency

In action

Backpack

AN

Pencil case

Apple

|

Pencil

LayeredPaneDemo

Cyan (2) =

Choose Duke's Layer and Position

Top Position in Layer

Move the Mouse to Move Duke

Yellow (0)

S=1E

Second Example

Frame

P

Layered Pane Layered Pane
ComboBox Label
CheckBox Label
Label
Label

Label ‘

Swing

JTextField
‘ Dbject — JText ﬂ“r
‘|“ TextArea
Component JComboBox
T JLabel
(Container
z|5 z|:. JList
‘Wiﬂdaw ‘JCDH‘IDDHEH’[IMenuBar
T T JOptionFane
Frame Dialog
JFansl
JFrame JDialog
J=crollBar
AbstractButtond JEUtton

