
Observer / Template Methods (cont.)

Comp-304 : Observer / Template Methods (cont.)
Lecture 27

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2007



Questions?

■ What is a design pattern?
■ What are the participants of the observer pattern?



Class Diagram



Implementation Concerns

■ The Observer pattern has numerous implementation 
concerns:
 Push vs Pull ?
 Who stores the subscription?
 Observing more than one subject.
 Who triggers update?
 Deleting subjects and observers?
 Subject's self-consistency
 Complex subscriptions
 Observers/Subject



Who stores the subscriptions?

■ In a traditional Observer Pattern, the subject manages 
it's own subscriptions.

■ This adds overhead to that class.
 Clusters the API.
 Forces it to deal with attach/detach method calls.

■ In a system with a low number of subscription, this is not 
a problem.

■ However, this is a burden to the subject if there are 
many subscriptions.

■ What can I do?



Subscription Manager



Notify()

■ Who can/should trigger notify?
■ When do we call a notify?



Who triggers notify()?

■ It's a question of safety vs performance.
■ Safety: after every setState(), we do a notify() and 

update() are sent.
 This insures a consistent state.
 It's very expensive when there are many setState() calls.

■ Performance: we do a nofity() after having completed the 
necessary setStates().
 We don't flood the system with update() calls.
 There is a danger of having inconsistencies.
 There is a danger that the call to notify is omitted



Deleting the Subject

■ If a subject is deleted, what should happen to its 
observer?



Deleting the Subject

■ We could delete the observers.
■ It's never that simple.

 Other objects might refer to those observers.
 The observers might be attached to other observers.

■ Maybe the subject could warn the observer?



Deleting the Observer

■ If an observer is deleted, what should happen to its 
subject?



Deleting the Observer

■ It's important to detach() the observer before deleting it.
■ Is there anything different between this detach() and a 

normal detach() call?



Observer / Subject

■ An object could be both a subject and an observer.
 In our example, OS is an observer and a subject.
 What happens when OS calls s.getState()?
 Most likely it will update its state, triggering a notify() and an 

update() call to O3.
 What happens if S observes O1? We would get a loop.
 If an object can be both an observer and a subject, we need to 

deal with loop.

S
OS

O1

O2

O3



Specific Interest

■ As we have already mentioned, the subscription 
mechanisms could be altered to deal with specific 
interests.

■ In other words, an observer could specify what part of 
the state it is interested in.
 Register with a player object, but only wish to receive updates 

about positions.
 Register with the stock exchange object, but only wish to 

receive updates about stocks trading for more that 10$.
■ While the complete state doesn't need to be sent, we 

have to keep track of what each observer want.



Increased overhead

■ In the scenario where subscriptions deal with specific 
interest, each subscriptions must be tracked separately

■ When the state of a subject is modified, each 
subscriptions must be checked.
 Information sent to the observers depends on their individual 

subscriptions.
 In particular case, we might need to check the subscription to 

see if update() is even called.
■ This means we are no longer broadcasting information in 

a generic fashion.
■ Preparing and sending each of these updates is very 

time consuming.



Self-consistency

■ Do you see a problem?



Self-consistency

■ Special care must be taken when extending the subject 
object.

■ The trick is that every method must respect self-
consistency as a pre-condition and post-condition.

■ This means that before the state is changed, the system 
should be consistent.

■ This also means that after the state is changed, the 
system should also be consistent (or at least converge 
towards a consistent state).

■ Instead of sub-classing, the template method design 
pattern is much more secure.



Template Method Pattern

■ Define the skeleton of an algorithm in an operation, 
deferring some steps to subclasses.

■ Template methods refine certain steps of an algorithm 
without changing an algorithms structure.



Example

■ Every concrete class can 
have it's own primitive 
operations and template 
calls these functions.



Concerns

■ The biggest challenge in template methods is making 
sure the method is used properly.
 Users need to know and understand which methods need to be 

overridden and which method is the template.
■ Luckily, most OO programming have constructs that help 

us out with this.
 Abstract methods, final methods, etc.

■ One of the most important things to keep in mind is to 
minimize the number of primitive operations.
 Keeps things simple and easier to implement.



Solution to Observer Problem

■ Template Method allows us to solve the self-consistency 
problem.

■ The idea is that the setState() method should be a 
template method with notify() as it's last line.

■ Sub-classes can then vary the behavior of the subject by 
changing the primitive operations.


