
The meaning of OO, part 2?

Comp-304 : The meaning of OO, part 2
Lecture 6

Alexandre Denault
Original notes by Hans Vangheluwe

Computer Science
McGill University

Fall 2006

Changes to Assignment 1

■ Task 2
 Fix any bug I might have inserted in the code. These bugs are

typos, usually involving one or two characters. If a method
does something mathematically impossible (division by zero,
for example), it should throw a ArithmeticError exception. You
will need to add those checks and test for them.

■ Task 3
 Implement the following functions in the Vector class :

dotProduct, unit. Also, implement the equals function in the
Force and Mass classes. You can use the unit tests from Task
1 to help you implement these functions (as done in XP
Programming).You don't need to implement the crossProduct
method in the Vector class.

Assignment 1 : Force Object

v1 = vector(2,2)
f1 = force(v1, 5, 10)

f1.getMagnitudeAtTime(0) -> (0,0)
f1.getMagnitudeAtTime(1) -> (0,0)
f1.getMagnitudeAtTime(4) -> (0,0)
f1.getMagnitudeAtTime(5) -> (2,2)
f1.getMagnitudeAtTime(6) -> (2,2)
f1.getMagnitudeAtTime(9) -> (2,2)
f1.getMagnitudeAtTime(10) -> (2,2)
f1.getMagnitudeAtTime(11) -> (0,0)

Assignment 1 : Force Object

v1 = vector(2,2)
v2 = vector(1,1)
f1 = force(v1, 5, 10).add(force(v2, 1, 6))

f1.getMagnitudeAtTime(0) -> (0,0)
f1.getMagnitudeAtTime(1) -> (1,1)
f1.getMagnitudeAtTime(4) -> (1,1)
f1.getMagnitudeAtTime(5) -> (3,3)
f1.getMagnitudeAtTime(6) -> (3,3)
f1.getMagnitudeAtTime(7) -> (2,2)
f1.getMagnitudeAtTime(9) -> (2,2)
f1.getMagnitudeAtTime(10) -> (2,2)
f1.getMagnitudeAtTime(11) -> (0,0)

Recap

1)Encapsulated
2)State Retention
3)Implementation / Information Hiding
4)Object Identity
5)Messages
6)Classes
7)Inheritance
8)Polymorphism
9)Generacity

Horizontal vs Vertical Packaging

Zone-based

Tile-based

Replication Strategy Interest Management

Zone-based
Replication Strategy

Zone-based
Interest Management

Tile-based
Replication Strategy

Tile-based
Interest Management

 Info. / Implementation hiding

■ When observing an encapsulation, we can have two
point of view:
 From the outside (public view)
 From the inside (private view)

■ The advantages of a good encapsulation is the
separation of the private and public views.

■ To access elements in the private view, users must go
through the public interface.
 Use of encapsulation to restrict internal workings of software

from external user view

Information vs Implementation

Information Hiding
■ We restrict user from

seeing information
 variables, attributes, data,

etc.
■ To access information,

users must use a set of
public methods.

Implementation Hiding
■ We restrict user from

seeing implementation
 code, operations,

methods, etc.
■ Users can use the

method without
knowledge of their
working.

Why should we do this?

■ Designer and user must agree on some interface, and
nothing else. They are independent. They do not need to
speak the same language

■ Software evolution is easier. Suppose user knows about
implementation and relies on it. Later, if the designer
changes the implementation, the software will break

■ Code re-use is high
■ Abstraction from user is high, user need not worry about

how it works!

Get / Set Rule

■ Never allow other class to directly access your attribute.
■ Once an attribute is public, it can never be changed.

 Ex: img.pixeldData
■ Make your attributes available using get/set methods.

 this.connectionStatus Bad!
 this.getConnectionStatus() Good!

Point

public interface Point {
public set(int x, int y);
public int getX();
public int getY();

}

■ Inside, point could be using Cartesian or Polar
coordinates.
 Cartesian coordinates are more efficient when dealing with lots

of translations.
 Polar coordinates are more efficient when dealing with lots of

rotatitions.

Network Engine Example

public interface NetworkClient {
public connect(String address);
public void send(Object obj);
public Object receive();
public void close();

}

■ This kind of network interface can be implemented using
multiple protocol.

■ The user doesn't even need to know which underlying
protocol is used.

Object Identity

■ Each object can be identified and treated as a distinct
entity.

■ Use unique names, labels, handles, references and / or
object identifiers to distinguish objects. This unique
identifier remains with the object for it's whole life.

■ We cannot use objects' states to distinguish objects,
since two distinct objects may have the same state (i.e.
same attribute values).

Distinct Identity

Player

Loc: 4,5
3897894

Square

Type: Wall
984323

Square

Type: Wall
4224534

Ghost

Color: Blue
678567

Memory Heap

Variable
 Player pacman

Mutable vs Immutable Objects

■ An Immutable object is an object that is created once
and is never changed.
 String, Long, etc.
 Two Immutable objects are considered the same if they have

the same state.
■ A Mutable object is an object who's state can change.

 Vector, Array, etc.
 Two different Mutable objects are never considered the same

(different identity).

Messages (Calls)

● Sender object (o1) uses messages to demand target
object (o2) to apply one of o2's methods

● For o1 to send a meaningful message to o2, it must
adhere to some message structure

● o1 must know o2's unique identifier
● o1 must know name of o2's method it wants to call
● o1 must supply any arguments to o2 so that the method may

execute properly
● i.e. in Java, we write o2.method(args)

Messages (Calls) (cont.)

■ In “pre-OO” language, we might have written method(o2,
args). Why is this not good?

■ This doesn't allow polymorphism!
■ For o1's message to properly execute o2's method, o1

must
 know the signature of o2's method
 pass the proper arguments (inputs)
 know if the method will return any values (outputs) and be

ready to store them accordingly

Types of Messages

● Three types of messages:
● Informative: supplies target object with information to update it's

attribute(s) [i.e. o2.setx(5)]
● Interrogative: asks target object to supply information about it's

attribute(s) [i.e. o2.getx()]
● Imperative: tells target object to do some action [i.e.

o2.moveNorth()]

Informative, Interrogative or Imperative ?

■ ghost.up() ?
■ grid.insertPlayer(pacman, square)
■ square.isWall() ?
■ pacman.collectPellet()
■ ghost.isScared() ?
■ square.addItem(pellet)

Synchronous vs Asynchronous

Synchronous Messaging
■ An object receiving a

request executes it
immediately and returns
the result.

Asynchronous Messaging
■ A object receiving a

request acknowledges it.
■ The request is executed

latter and the return value
is eventually returned
(often through the use of
a call-back method)

