UML

Behaviour Diagrams

' Behaviour Diagrams

" Structure Diagrams are focused on describing the static
composition of components (i.e., constraints on what
Intstances may exist at run-time).

" Interaction Diagrams focused on describing the
communication between the various components.

" Behaviour Diagrams focus on describing the behavior of
* the whole application
* aparticular process in the application

* a specific component

y

' Different Formalisms ...

" We will look at different formalisms/languages:
* Finite State Automata/Machines
* Activity Diagrams

* Statecharts

' Finite State Automaton

" A finite automaton consists of
* Set of states
* Input alphabet (of input “events”)
* Rules for changing state
* Start State (exactly 1)

* Accept State(s) (when used for language recognition)

Formal definition, from Sipser's Theory of Computation

y

Example : Automatic Door

Automatic Sliding Door

' Specification

" The automatic door can be opened or closed.

" The sensor at the top of the door can send 4 types of
signals:
* Nobody : There is nobody in front nor behind the doors.
* Front: There is somebody in front of the doors.
* Behind: There is somebody behind the doors.

* Both: There is somebody in front and behind the doors.
" The door behaves as follows:

* The door opens when somebody is in front of the doors.

* The door closes only when nothing is in front or behind the
doors.

® The door starts off closed. A

Specification
" The automatic door can be opened or closed. (state)

" The sensor at the top of the door can send 4 types of
signals: (input alphabet)
* Nobody : There is nobody in front nor behind the doors.
* Front: There is somebody in front of the doors.
* Behind: There is somebody behind the doors.

* Both: There is somebody in front and behind the doors.
" The door behaves as follows: (transition)

* The door opens when somebody is in front of the doors.

* The door closes only when nothing is in front or behind the
doors.

" The door starts off as closed. (start state) A

' Diagrams

L)

Frgnt, Belind,
Eehimj,Enjth[Open) [E"jﬁe'jj N athing

T Frant, Both T

Class Diagram of FSA

FSA

+addstate()
+addTransiticoni)
+drawi()

[N
exactly 1 INIT state

State statas

1 %*

unldus nams Ihl+n-a_me: String

+tyvpe: enum{INIT, REZ, TERM}
+drawl()

?Es_rg%t (}

transiticns=1{}

for TEEM state: ‘j

[zet]

Deterministic FA
ocutgoing transitions
Q] have |= inputEvents
*

Transition transitions

+inputEvent: Event
+outputEvent: Event

+draw()

Describing Reactive System Behaviour:
Output and Guards

" We can extend this by adding the notions of output and
guards.

* Both of these additions can be found on the transition arrow.

" When a transition is triggered, it can broadcast an output
event (or perform an action).

" Conditions can be imposed on transitions by adding
guards.

* A transition can then only take place if the guard evaluates to

true.

Example

Mothing / closeDoor()

¢ B

Frgn, Benind,
Behing, Both (Cpen j (Closed j Nothing
ﬂ T

Front, Both [time = & and < 21] / openDoaor()

Note: total state ? I

Executing/Simulating an DFA

initialize the state
currentState = getlnitState()

as long as there is input
whi | e environnent. i nput Renmai ni ng():

get input event fromthe environnent
current Event = environnent. getl nput ()

find applicable transition fromcurrent State
current Transiti on = None
for transition in currentState.transitions:
i f transition.inputEvent == current Event:
current Transition = transition
break # assunes determ ni sm
I f currentTransition == None:
print "unrecogni zed event, rejecting input"”
sys.exit() # or ignore: pass

generate out put event
envi ronnment . put Qut put (transi ti on. out put Event) # could be action

update the current state
currentState = transition.target

I f currentState.type == TERM
print "input accepted"
el se:

print "input rejected"

' Non Deterministic vs. Deterministic

" A non-deterministic FSA (NFA) is a finite state
automaton where there exists a least one state where
multiple transitions can be triggered by the same event.

" Since all NFA can be transformed into a DFA (although
this might cause a combinatorial explosion), we mostly

consider the case of DFAs.

' Reqular Expressions

" Regular expressions can be modelled by finite state
automata

y

' What is a Regular Expression?

" A (text) pattern that describes (matches) a set of strings,
according to certain syntax rules.

" As such, a Regular Expression specifies a language

" Examples of regular expressions include:
* Text starting with the letter “a” and finishing with the letter “z”.
* Text with at least one number, but not starting with the letter “a”
or “b”.
* Text with a letter repeated three times in a row.

* Text contains the string “abc” exactly three times.

y

' RegEx Constructs

" Most Regular Expression Language offer the following
constructs.
* Sequence: abc
* Alternation: john|bob
* Grouping: b(ola)b
* Quantification:
> ?7:00r1:(514)?7555-5555
> *:0or more : abc”

> +:1 or more : abc+

From RegEx to FSA

ab((cd)|(de))

' Solution

?
e e e

C d

i

(state 4 j state 5

(state 6 S (state 7 S

y

RegEXp

a+b(c|df*)(eh]gi)

' Corresponding FSA

d

0]
Com) 5o

|
() o)

h i

y

=

The Big Picture: testing interactions

el
S

®©

A ah d:0 | elE |
| I |
|
|
| @ Regular Expressions:
b 1
[| | FE[] = CL (b RS (ude it
B [| | i (O 20 RR
| I |
L 1 1

Yy A T °

\ GEMERATE CODE / @
class A:

def init_ {self):

class D
def __init_ (self):

class E;
def init (selfy

class My Scanner Scanner):

ient 11 A connection request is sent to chat soom | def imit (self stream):
LIRS | -

e Tk |} Reveied e esion request fiven hisn 7

IRRZ

NS
&

OK?

' From Requirement

RECUNREMENT

®

R

@ Regular Expressions;

]

| .

L~ I P

I | i [| \—> B[P a]* i CL (i) RS (il
B c | | B[] CR 20 RR L

|
|
|

\ GENERATE CODE / @
Il

%

\ GEMERATE CODE / @

51

class Ac
def it (sell):

class D
det _ init_ [selfh:

class E;

def init_ (self):

class MyScanner Scanner):
o | Client 2) A connectim Tequest 18 sEml fi= 2hat roodn 1. IJEF in]t r'rt:”‘l H[l‘E'HL'I.'l:I:

v
7

ad (Chan necas) Recaved aooeection request froen el 3

[CRLIER?

YERIFY

<

OK?

To automated Testing

\
<

®

