UML

Behaviour Diagrams




' Behaviour Diagrams

" Structure Diagrams are focused on describing the static
composition of components (i.e., constraints on what
Intstances may exist at run-time).

" Interaction Diagrams focused on describing the
communication between the various components.

" Behaviour Diagrams focus on describing the behavior of
* the whole application
* aparticular process in the application

* a specific component
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' Different Formalisms ...

" We will look at different formalisms/languages:
*  Finite State Automata/Machines
* Activity Diagrams

* Statecharts




' Finite State Automaton

" A finite automaton consists of
* Set of states
* Input alphabet (of input “events”)
* Rules for changing state
*  Start State (exactly 1)

* Accept State(s) (when used for language recognition)

Formal definition, from Sipser's Theory of Computation
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Example : Automatic Door

Automatic Sliding Door



' Specification

" The automatic door can be opened or closed.

" The sensor at the top of the door can send 4 types of
signals:
* Nobody : There is nobody in front nor behind the doors.
* Front: There is somebody in front of the doors.
* Behind: There is somebody behind the doors.

* Both: There is somebody in front and behind the doors.
" The door behaves as follows:

* The door opens when somebody is in front of the doors.

* The door closes only when nothing is in front or behind the
doors.

® The door starts off closed. A



Specification
" The automatic door can be opened or closed. (state)

" The sensor at the top of the door can send 4 types of
signals: (input alphabet)
* Nobody : There is nobody in front nor behind the doors.
* Front: There is somebody in front of the doors.
* Behind: There is somebody behind the doors.

* Both: There is somebody in front and behind the doors.
" The door behaves as follows: (transition)

* The door opens when somebody is in front of the doors.

* The door closes only when nothing is in front or behind the
doors.

" The door starts off as closed. (start state) A



' Diagrams
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Class Diagram of FSA

FSA
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Describing Reactive System Behaviour:
Output and Guards

" We can extend this by adding the notions of output and
guards.

* Both of these additions can be found on the transition arrow.

" When a transition is triggered, it can broadcast an output
event (or perform an action).

" Conditions can be imposed on transitions by adding
guards.

* A transition can then only take place if the guard evaluates to

true.



Example
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Executing/Simulating an DFA

# initialize the state
currentState = getlnitState()

# as long as there is input
whi | e environnent. i nput Renmai ni ng():

# get input event fromthe environnent
current Event = environnent. getl nput ()

# find applicable transition fromcurrent State
current Transiti on = None
for transition in currentState.transitions:
i f transition.inputEvent == current Event:
current Transition = transition
break # assunes determ ni sm
I f currentTransition == None:
print "unrecogni zed event, rejecting input"”
sys.exit() # or ignore: pass

# generate out put event
envi ronnment . put Qut put (transi ti on. out put Event) # could be action

# update the current state
currentState = transition.target

I f currentState.type == TERM
print "input accepted"
el se:

print "input rejected"




' Non Deterministic vs. Deterministic

" A non-deterministic FSA (NFA) is a finite state
automaton where there exists a least one state where
multiple transitions can be triggered by the same event.

" Since all NFA can be transformed into a DFA (although
this might cause a combinatorial explosion), we mostly

consider the case of DFAs.



' Reqular Expressions

" Regular expressions can be modelled by finite state
automata
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' What is a Regular Expression?

" A (text) pattern that describes (matches) a set of strings,
according to certain syntax rules.

" As such, a Regular Expression specifies a language

" Examples of regular expressions include:
* Text starting with the letter “a” and finishing with the letter “z”.
* Text with at least one number, but not starting with the letter “a”
or “b”.
* Text with a letter repeated three times in a row.

* Text contains the string “abc” exactly three times.
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' RegEx Constructs

" Most Regular Expression Language offer the following
constructs.
* Sequence: abc
* Alternation: john|bob
* Grouping: b(ola)b
* Quantification:
> ?7:00r1:(514)?7555-5555
> *:0or more : abc”

> +:1 or more : abc+




From RegEx to FSA

ab((cd)|(de))




' Solution
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RegEXp

a+b(c|df*)(eh]gi)




' Corresponding FSA
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The Big Picture: testing interactions
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' From Requirement

RECUNREMENT
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