UML

Class Diagrams

' Class Diagram

B Classes consist of

ClassName
* the class name Attributes
written in BOLD Methods
* “features”

User-defined constraints

> attributes and methods .)
(invariants)

* user-defined constraints

, constraints ma
" Note that class diagrams also be written}fas

contain only classes, not note

objects. I

' Class Example

® Here is a concrete

example of a class called 2DPoint
Point, which depicts a 2D Hiiﬂi
. y:in
point. getx():int {return x}
" There are no constraints setx(a:int):void {x = a}
(yet...) gety():int {return y}

B A class name is written in
UpperCamelCase

y

' Visibility

" A set of prefixes for attributes and methods

* + public — visible to instance of any class

L 4

protected — visible to instances of any subclass

*

— private — visible only to instances of the class itself

*

~ package — visible to instance of any class
within enclosing package

" Visibility is a class feature. It is found only in class
diagrams and is enforced statically (at compile-time).

Visibility

-a@: 1nt
#b: 1nt
+m(pl:int,p2:1int): int

Ja

d:D
D -
c<lnstances> .
+d: int = @ o o om E:lgg
+n(p:Boolean): wvoid : = :
mi]
ni)

y

® |n UML, inheritance
syntax: a line with a
hollow arrow.

® |n this case, Cube is a

Rectangle (good design).

Inheritance

Rectangle

- width: int
- height: int

+ Rectangle(width: int, height: int)

+ getWidth(): int
+ getHeight(): int

I\

Cube

Cube(int size)

y

' Interfaces

" In UML, interfaces are used to represent

require/provide relationships

Datafccess il
O Facilities
Fagilifies
20— Encryption
= o0 2]
- = .
- security
Seminar il - DataAceess @ Access Controd | =<infrastruciure==
Management = Student
v Ty
e] = e B ~—Stude
N :
NS 2
S
\ 2]
gl Daiaﬁ%_ Seminar Persistence
Student ; Persislence | <<infrastruciure>>
Administration f=— — — SEE%_' — _@’_ |
<<I>> \ | \
Secompongnts> | il |
Dﬂlﬂ.ﬁm%_ <<requires=>
Schegiile Schedule \
G]
o— gl | |

University D
<<lnlabases nac

' Interfaces
.

nterfaces allow specification of
a realization of requires/provide .
«interface»

relation. Shape

: tWidth(): int
® Interfaces describe a contract gEtH;ighig):l?nt

between the class and the A
outside world. |

® This contract is enforced at ____Rectangle
width: int

build time by the compiler. height: int

. : Rectangle(width: int, height: int)
all methods defined by that getWidth(): int

interface must be implemented | getHeight(): int
by the class.

® UML: <<interface>> stereotype Note: stereotype and profile are ‘

UML's extension mechanisms

' Abstract Members

" Abstract methods (in italic):

no implementation given Vehicle
—» can not instantiate wheels: Wheel[4]
body: CarBody
B Class with at least one position: Position
abstract method: move(float distance): void
turn(float amount): void
Abstract Class. getPosition(): Position

" Inherit from Abstract Class
and implement the abstract
methods.

y

' Templates

® As we saw with
genericity, Templates are [0:Object
a mechanism to List

“parametrize” the types of ~ |content: List<O>

_ _ add(element: O): void
ObjeCtS In class/method remove(element: O): void

.y isContained(element: O): boolean
definitions. ()

" In UML, they are defined
with a box in the upper
right corner of the class.

y

| " A package allows grouping model elements.

Class Diagrams and Use Case Diagrams.

" Classes and objects in package have a prefix:

* ClassName::PackageName

L 4

objectName:ClassName::PackageName

Package

® Can be used for all UML constructs. Most common for

" A package may (hierarchically) contain other packages.

PackageM ame

Classhame:PackageName

01:Classhame: PackageName

Altributes

Altributes

Methods

Methods

User defined constraints
(invariants)

User defined constraints
(invariants)

y

Seminar il

Management
<< ==

2]

Stident
Administration
<)==

Cratadcc
d 253 O—

Failifies

i

g]

Facilities

2]

Student

Components

2]

Seminar

Dalaﬁ.::x%g_

Schedule
G._

LEpgmpangni>>

Schedule

Encryption
O]
Security
Accass Control | <<infrastruciure==
Persistence
Persislence | =<infrastruclures>
€ |
\
\
<<requiress>

2]

University DB
=<l plabase==

l.
'|

JOBC

' Class Attributes

" Class Attibutes aka static members (either attributes or
methods) exist at the class level.

" Only one unique value across all instances of the
class.

" They can be used without instantiating an object.

" UML syntax: underlined (why?).

VideoUtils

' Arrows

Inheritance
" Arrows in UML can have
different meaning. ~ Implements
® Hollow arrows describe (interface)
an inheritance relation. Association

<
® Closed arrows are used
to describe associations. ~ Aggregation

® Diamond arrows define
composition relations. P Composite

' Annotations

< {dynamic}

® annotations put over
arrows in class diagrams
to specialize their < {complete, disjoint}
meaning.

y

' Special Inheritance Relations

" We can use stereotype relations to better define the type
of inheritance.

" The three attributes are
* Disjoint or Overlapping
* Complete or Non-complete

* Dynamic or Static

" These attributes are best understood using set theory.

Animal ‘

Animal Example

Animal

{ﬂ%&ﬂﬂpping, complete}

Carnivore

L

Herbivore

JAY

Ominivore

y

Vehicle Example

Vehicule
«abstract»

JAN

{disjoint, complete}

ExternalPower

power location

InternalPower

y

Employee Example

Employee
«abstract»

Manager

Non-Manager

{ﬁiint, complete,dynamic}

y

' Implementation

" Employees can get promotion and become managers.

" Employees can get demoted and become non-
managers.

" How would you implement this change?

y

' Non-Manager to Manager

" How do we implement the dynamic change of a Non-
Manager becoming a Manager?

" Option A: Create new object Manager. Copy fields.
Destroy old object Non-Manager.

" Option B: Flag if Manager or not. So we only need an
object employee and it contains all the attributes for Non-

Manager and Manager.

' Association

B Associations describe which/how classes interact which
each other.
* You can give an association a name (always a noun)

> A full black arrow next to a name indicates the direction the
diagram can be read.

* You can put roles at the end of connectors.

* You can also put numbers to indicate cardinality.

y

' Cardinality of Associations

" One-to-one
" Many-to-one or One-to-many

" Many-to-many

' Employee Example

friendship P

employement

Person 0> 02 Company

resident_inp

primary_rgsident_inp

Province

' Association Class

" Used to represent associations which contain information.

dog ownership<
owned 0..n

Dog Owner

owner 1

DogOwnership

+getBuyDate()
+setBuyDate()

' Navigation

Person object has a reference to dog object(s).

ownership

Jog <nwned * owner 1 Person

" Dog object has a reference to person object.

ownership

Do Person
g owned * owner

" Both objects have references to each other.
ownership

owned * owner

Dog Person

" This relates to performance (at the cost of space). '

' Association, in whole or In part

Two special types of associations exists:

" Composition

" Aggregation

' Which is which?

Scenario 1 Scenario 2
® You can find books in a ® You can find shelves in a
bookcase. bookcase.

y

' Composition

" A composite object does not exist without its
components.

* If we delete a composite object, we could use cascading-delete
to remove it and its components.

" Often, components are of different types

" Each component is a part of a single composite.

Glider

1
1
Airframe Tail Wings

' Aggregation

" Aggregate (whole) object can exist without aggregands
(parts).

" Objects may be part of multiple aggregates.

" Often, components are of the same type.

Room

%

Desk Chairs I

