UML

Object-Interaction Diagrams:
Sequence Diagrams

' Communication and Time

" In communication
diagrams, ordering of 1) landQ)y,
messages is achieved by

labelling them with E;fgi}%{ﬁ It A) etzﬁgeu: int
5) betangle(int)

sequence numbers

aclTAIrcraft

leftFlap:Flap rghtElap Flap

" Does not make temporal
oredering very explicit.

' Sequence Diagrams

aclTAircraft leftFlap:Flap rightFlap Flap
land(y, i |
. = E(): | M| |
" Sequence diagrams EEEE— |
N |
make temporal order setangle(int) _p,, |
. s I
epr|C|t. getangle(): |nt > |
I
I
" However, they do not setangle(irt o]
C C |
contain link/association | :
|
I
I

information. i

y

A closer look

ac TAircraft leftFlap.Flap rghtFlap Flap
I I I
|ar|'j|::];} | | |
getangle(). int . | |
L~ I
I
setangle(int) - I l
- |
|
qetangle(): |nt - !
S
setangle(ir) |

=5 __

\

' Components of Sequence Diagrams

" Vertical time axis, time increasing downwards.

" Obijects that exchange messages in the current
execution are shown on the horizontal axis, at the top.

" With every object is a vertical dashed line, which depicts
an object's lifeline.

" Over the object active lifetime, the lifeline is a rectangle,
which depicts when an object is active (i.e., has control).

* The rectangle's size is proportional to how much time the
execution takes.

* Arrows depict messages from a sender object to a target
object and the message is written along the arrow. A

' In this diagram ...

" In the example above, we assume that ac1 has a leftFlap
and a rightFlap.

" Note that when we send the getAngle() message, we
don't have an arrow that shows the return value.

" The message is synchronous, so return is implicit and it

IS not shown on the diagram.

' Problem

" Suppose the code for land() was the following...
function land()

left = leftFlap.getAngle()

right = rightFlap.getAngle()

1f (left != landAngle)
leftFlap.setAngle(landAngle)

1f (right != landAngle)
rightFlap.setAngle(landAngle)

" How can we show that setAngle(int) will be conditionally

called ?

' Solution in UML 1.4

How can we show that
setAngle(int) will be conditionally

Ca”ed ? function land() AN
left = leftFlap.getAngle()
B ' nght = rightFlap.getangle()
We Can't ! if {left 1= landAngle)

, , _ leftFlap setAngle(landAngle)
" The solution is to add annotations | i (ignt = landAngie)

_ rightFlap.setAngle(landangle)
to the diagram, on the far left.

if leftFlap angle doesn'tequal Ly

® The note will let us know of this landing angle, then call
o setAngle(landing angle) an |eftFlap.
conditional message. Do the same for rightFlap.

" The note can be pseudocode or

just a plain sentence. '

Solution in UML 2.0

® Use an OPT frame.

ac TAircraft leftFlap:Flap rightFlap:Flap
land(} |

|

getangle(): int . !
L=

apt [leftAngle 1= Iandf-’-‘mgley setangle(int) -
b=
! .
getangle(): Int |
| L
I
I
apt [righAngle 1= Iandﬂ«ngley setangle[irh -
| ="
I
I
l
I
I

' All types of Frames

Alt: Alternative fragment for mutual =« ** »
exclusion conditional logic - caculte

P — — — — — — — — — — — — —

expressed in the guards. [elSe] |

calculate

" Loop: Loop fragment while guard is
true.

" Opt: Optional fragment that :
executes if guard is true. i atetioxsae >

1
loop / [more items |
i enterltemiitemiD, quantity)

Par: Parallel fragments that execute
in parallel.

dascnplion, tolal

endSale

" Region: Critical region within which
only one thread can run.

' Synchronous vs. Asynchronous

" If you order a piece of equipment, and the salesman
goes in the back store, do you wait for the piece of
equipment?

" |f you order a piece of equipment, and the salesman tells
you it is backordered, do you wait for the piece of
equipment?

y

' Synchronous Messages

" The sender object waits until target object finishes its
execution of the message.

" Target object processes only one message at a time.

" Consequently, this behavior represents a single thread
of control.

* only one object is active at any time

y

' Asynchronous Messages

" Sender object does not wait until target object finishes its
processing of the message (execution of the called
method).

® Target object may accept many messages at a time.

" Consequently, this behavior requires multi-threaded
execution.
* many objects can be active at any time

* this is also known as concurrency

y

' Depicting Asynchronous Messages

" Instead of using a regular arrow, we use a stick
arrowhead (in both collaboration and sequence).

* In collaboration diagrams, nothing really changes!
" In sequence diagrams

* we may have two objects executing at the same time.

* sender object continues executing after sending message,
target object starts executing as well.

" Of the target object can accept multiple messages, how

does it handle them?

' Concurrency

" If target object's method implements threading,

* It can thread itself to handle messages.

* This is called operation level concurrency.
" If target object itself implements threading,

* It can thread itself to handle messages.

* This is called object level concurrency.

" If objects don't implement any threading but the system is concurrent,
objects must implement some way of handling messages. (system level
concurrency)

* Refuse message(s) if busy

* Interrupt current executing message and start on new message
* Queue message(s) for later processing (can be priority queue) ‘

' Message Priorities

" One way to deal with asynchronous messages is to
queue them.

" That way, only one of them is processed at a time.

" But what happens if a message is more important than
others.

" You can use priority levels to determine the order
messages are processed.

" What are the dangers of this?

y

' Async Flaps

acl.Alrcraft lefiFlap. Flap rightFlap Flap

and(}_ | i
|

d gqet@angle(). int
T

\

|

sefangle(int) |
setangle(jnt) ~, |

I

|

|

' Callback Mechanism

" Uses asynchronous messages.

" A subscriber object o1 is interested in an event e that
occurs in o2.

" 01 registers interest in e by sending a message (that
contains a reference to itself) to 02 and continues its
execution.

" When e occurs, 02 will callback asynchronously to o1

(and any other subscribers).

Callback lllustrated

appApplicatian drawAction: Actiaon draw B utton: JBuUttan

|
' :
|

register(grawAction) |
| =

|£,fl2tiﬂﬂF'Et‘fo‘ﬂEd[EVEﬂt]

!fctiujﬂF'erTujmed[Eventj

!fctiujﬂF'erTujmed[Eventj

' Object End-of-Life

" Sequence diagrams use
an X to symbolize the end- [Dispatcrer

of-life of an object. |

create(Task) > ‘Draw Cammand

" In garbage-collected
languages, nothing needs
to be done.

execute()

[P
L~

" However, in other %
languages, such as C++,
the memory must be

freed. |

y

send a message to multiple objects.

Broadcast

" Similar to iterative messaging, broadcast allows you to

" However, contrary to iterative messaging, no references
are required.

" A broadcast is send to all the objects in the system.

* joad() -

Starfll) pSequence

sbroadcasty

(Object)

" If only a specific category of object is targeted, we call

this a narr

T loadl) -

Startl) pSequence

«broadcasts

(Shape)

-

y

