Composite

Comp-304 : Composite
Lecture 25

Alexandre Denault
Original notes by Hans Vangheluwe
Computer Science
McGill University
Fall 2007

y

3D Room

Scene Graphs

Universe
/ \
Room 1 Room 2
N ~\
Desk Bed Wardrobe
Books Lamp Doors Drawers

y

' Hierarchy

" Elements are placed in a hierarchical structure.

* Makes culling faster and easier.

" In such a structure, we want to manipulate the composite
nodes and the leaf nodes in a similar way.
* Bounding Boxes

* Scaling, Rotation, Translation

y

' Composite Pattern

® Compose objects into tree structures to represent part or
whole hierarchies.

" Allow for uniform treatment (by clients) of
* Atomic/primitive Objects

* Composite Objects

y

y

Scale (0.5) — /\

Universe

Room 1

Scaling

Room 2

U

Desk

A

Bed

Books

Lamp

Wardrobe

=\

Doors

Drawers

y

' Scaling Explained

" Clients can use the scale command on any node, sub-
components will also be scaled.

" The user doesn't need to worry about the type of object
he is dealing with.

" To make this work, all components must implement the
scale command.

* Must have the same interface.

y

' Consequences

" (+) Makes the client simple.

* Client doesn't need to check if it's dealing with a composite or a
leaf.

" (+) Easier to add new kinds of components.
* Either composite or leaves.

" (-) Makes your design overly general.

* This has the disadvantage of making it difficult to control which

components can be part of a composite.

* You will most likely need to do runtime checks.

Class Diagram

Client Component

+operationy...)

+addcomp Component)
+removefcomp: Component) _children
+getChildrenfcomp: Component) |

? (complete, disjoint}

| eaf Composite

+operation(...) +operation(...) —
+add{comp: Component)
Hemove(comp: Component)
+getChildren{comp: Component)

' Problems?

® Component is an abstract method, so leaf must
implement the add/remove methods.

® But does leaf need those methods?

" Simplest solution is to raise an exception when those
methods are called.

* Bad design!

y

Class Diagram, Take 2

Client

Component

+operation|...)
+addicomp Component)

tremove(comp. Component) éhildren
+gefChildren(comp: Component) %

[‘5 fcomplete, disjoint}

eaf Camposite
+operation(...) +operation(...)
+add{comp: Component) {raises Exception} +add{comp: Companent)
+remove(comp: Compaonent) {raises Exception) +remove(comp: Compaoanent)
+getChildren(icomp: Component) { returns null} +getChildren(icomp: Component)

' Add/Remove

® Where should the add/remove methods be declared?

* If we declare it in component (component-level), then the
leaves will have meaningless methods.

> Bad Design!

* If we declare the methods only in the composite (composite-
level), then we break the abstraction.

> Client needs to know the difference between composite
and leaf.

® Who keeps references to the children?

* At the component level, this would be bad design.

* There will be a memory penalty since leaves will now also have

a structure to keep track of children. ‘

Safety vs. Transparency

Component Component
+operation(...) +operation(...)
+add(comp: Component)
. +remove(comp: Component) children
< Ehﬂdm" +getChildren(comp: Compenent) [< 0.
ﬁ?{cnmplete, disjoint} ?{Cﬂmmﬁ'ﬁ& disjoint}
Composite Composite Leaf Composite
+operation(...) +operation(...) < +operation(...) +operationi...) <

+add(comp: Component)
+remove(comp: Component)
+getChildren(comp: Component)

Safety Transparency

y

Multiple Parents

" What happens if a child has multiple parents?

Universe

Scale (0.5) /\

Room 1

NN

Desk

Room 2

A

Door

Books

Lamp

Wardrobe

=\

Doors

Drawers

y

' Other Implementation Concerns

" Child Ordering : if we draw shapes, we need to know
which shape is above other shapes.

* We can just store the children in order, but we need the proper
data structure for that.

® Caching children lookup: Each composite caches its
number of children.

* If a new composite is added, we can easily compute the
number of children.

* Again, memory vs. speed.

" Who should delete?
* Sending delete to a component, should we cascade—delete”

Inventories

& Player Inventary

i

Capacity | 0/16 Weight 0.0/8.0

Capacity © 0/9 Weight 0.0/100.0

WorldObjects

WaorldObject

getid(): Id
getP asition(): Paosition
getShape() Shape —
getlame(): Name
is\visible(): boolean
addObject(w o WorldObject)
remaveCbjectiwa: WarldObject) ro
getObjects() Set<WorldObject>

1

termObject PlayerObject

Which cohesion problem can be found here?

Bob

T

Wallet

i

Currency

In action

Backpack

AN

Pencil case

Apple

|

Pencil

LayeredPaneDemo

Choose Duke's Layer and Position

Cyan (2) - Top Position in Layer

Move the Mouse to Move Duke
Yellow (0)

Second Example

Frame

L

Layered Pane Layered Pane
ComboBox Label
CheckBox Label
Label
Label

Label ‘

Swing

JTextField
‘ Dbject — JText ﬂ“r
‘|“ TextArea
Component JComboBox
T JLabel
(Container
z|5 z|:. JList
‘Wiﬂdaw ‘JCDH‘IDDHEH’[IMenuBar
T T JOptionFane
Frame Dialog
JFansl
JFrame JDialog
J=crollBar
AbstractButtond JEUtton

