
UML

(Object-)Interaction Diagrams



Specifying (constraints on) 

Dynamics

■ Class diagrams describe (constraints on) the structure of 
instances. 

■ (Object-)Interaction diagrams describe (constraints on) 
the behaviour of an application.

 Not structure (static), but behaviour (dynamic)

 Composed run-time entities : objects (no classes at run-time)

■ Two kinds of object-interaction diagrams 

 Communication Diagrams

 Sequence Diagrams



Behaviour

■ Object-Interaction diagrams depict dynamic, run-time 
behaviour (between objects, not internal view!)

 communication between objects via messages

 sequence of transactions in a dialog between a user and a 
system, or between objects in a system

 one trace of behaviour ideally corresponds to one use case

■ With the object-interaction diagram, we introduce the 
notion of time (may be abstraction: progress).



Communication Diagrams

■ Communication diagrams represent objects in a system 
and their links.

■ They are composed of three elements:

 Objects

 Links (“instance” of Association)

 Messages



Sequence Diagrams

■ Sequence diagrams 
illustrate the sequence of 
actions that occur in a 
system.

■ They are composed of 2 
elements

 Object

 Messages



Sequence vs. Communication

■ Both diagrams specify/constrain object interaction.

 Sequence is used to illustrate temporal interactions.

 Collaboration is better suited to display the association between 
the objects.

■ In principle, a sequence diagram can be converted into a 
collaboration diagrams (and vice-versa). Need to contain 
equal amount of information.



Spread Sheet example



Communication Diagram

■ Remember, we are depicting the interaction between 
instances, not classes.

■ ac1 has a reference to a Flap named leftFlap.

■ In the code of the method land(), there is a call 
leftFlap.setangle(int)

■ Add sequence numbers !



A few things to note

■ To depict a message, we draw a small arrow from the 
sender object to the target object. This shows the 
direction of communication

■ With the arrow is the operation name we desire to 
execute, along with all arguments

■ The arrow is parallel to a line, which depicts there is a 
link between the objects (usually an instance of an 
association, but not necessarily)



No association?

■ If objects aren't linked by association, then how could 
they be linked?

■ Suppose o1 sent o2 a reference to itself. So, o2 may 
refer to o1 (via the reference) even though there is no 
association between the classes of o1 and o2.

■ This is known as a dynamic reference.

■ This reference allows a target object to “callback” a 
sender object.



Callback

■ The more formal description of callback is executable 
code that is passed as an argument to other code.

■ However, the term callback is also used when a 
reference is passed to achieve the same thing.

■ Callbacks are often used in asynchronous messaging.

■ A piece of code or a reference is assigned to do 
something when a specific event occurs.

 i.e. Swing and an ActionListener



Polymorphism

■ Triangle, Rectangle and Square are subclasses of 
Shape.

■ Suppose we want to send the message show() to a 
Shape object.

 At run-time, this object could be an instance of Triangle, 
Rectangle or Square.

■ We know source and destination of the message:

o1 sends a message to o2



Polymorphism (cont.)

■ Make the target object's class the lowest class in the 
inheritance hierarchy that is a superclass of all the 
classes to which the target object may belong to.

■ Put the superclass name in parenthesis to show that it 
will be evaluated at run-time.

■ This is a form of substitutability.



Iterated Messages

■ Suppose we have an object canvas:DrawArea which 
contains an array of Polygons (Triangles, Rectangles and 
Squares).

■ We want to send the message show() to all the contained 
objects (Polygons) of the aggregate object canvas.

■ The Iterator Pattern (a design pattern) can be used as a 
traversal method.



Iterated Messages (cont.)

■ Notice the aggregate connector 

(in Class Diagram, really).

■ show() message is called many times (the *)

■ DrawArea may have 0 or more Polygons in its collection 
named shapes.

■ The target object is unnamed and double boxed to show 
multiplicity.



Referring to Self

■ When an object refers to self, it is referring to its own 
object handle.

 In Python, we also use the keyword self

 In Java, C++ and PHP, we use the keyword this

 In Visual Basic, we use the keyword me

■ This is useful to

 Pass the target object a reference to the sender object (for 
callbacks)

 Send a message to itself



Passing a reference to self

■ In message, just add self as an argument.



Sending a message to self

■ There are two ways to depict this (note: aliases in UML)



Why send a message to self?

■ Implementation / information hiding.

 We don't want to show how a variable is stored or manipulated.

 get/set (accessor/mutator) methods

■ We might want to hide implementation details from 
methods within the same class (especially if those 
methods are public).


