

 Only connect ... (Ch2 of GoF)
Composite:
represent document structure,

Strategy:
different formatting algorithms

Decorator:
embellishing the user interface

Abstract Factory:
multiple look-and-feel standards

Bridge:
multiple windowing platforms

Command:
undo-able user operations

Iterator:
traversing object structures

Visitor:
add functionality independent of
document's structure

 Composite Pattern

 Composite Pattern: Glyphs

 Strategy Pattern (aka Policy)
Define a family of algorithms, encapsulate each one,
and make them interchangeable.

Strategy lets the algorithm vary independently from clients that use it.

Example: line breaking

 Strategy Pattern

 Embellishing: Decorator Pattern

 Decorator Pattern

transparent enclosure

● single-child composition
 (instead of inheritance)
● compatible interfaces
 (unlike adapter)

 Decorator Pattern

 Related to ... Facade Pattern

 Abstraction to minimize communication/dependency

 Facade Pattern example

 Abstract Factory Pattern

Create families of related products

 Abstract Factory: products

 Abstract Factory
is usually a Singleton

 Bridge Pattern

Intent: Decouple an abstraction from its implementation
so that the two can vary independently (and dynamically).

Aka: Handle/Body

Supporting multiple UI platforms

 Bridge Pattern

 Bridge Pattern

 Operations: Command Pattern

 Command Pattern (invoke)

 Command Pattern: undo/redo

 Iterator Pattern

 Traversal vs. Traversal Actions

 Visitor Pattern

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

