


  Only connect ... (Ch2 of GoF)
# Composite: 
represent document structure,

# Strategy: 
different formatting algorithms

# Decorator:
embellishing the user interface

# Abstract Factory: 
multiple look-and-feel standards

# Bridge:
multiple windowing platforms

# Command: 
undo-able user operations

# Iterator:
traversing object structures

# Visitor: 
add functionality independent of 
document's structure



 Composite Pattern



   Composite Pattern: Glyphs



  Strategy Pattern (aka Policy)
Define a family of algorithms, encapsulate each one, 
and make them interchangeable. 

Strategy lets the algorithm vary independently from clients that use it.

Example: line breaking



  Strategy Pattern



  Embellishing: Decorator Pattern



  Decorator Pattern

transparent enclosure

● single-child composition
  (instead of inheritance) 
● compatible interfaces
  (unlike adapter)



  Decorator Pattern



  Related to ... Facade Pattern

 Abstraction to minimize communication/dependency 



  Facade Pattern example



 Abstract Factory Pattern

Create families of related products



  Abstract Factory:  products



  Abstract Factory
is usually a Singleton



  Bridge Pattern

Intent: Decouple an abstraction from its implementation 
so that the two can vary independently (and dynamically).

Aka: Handle/Body

Supporting multiple UI platforms



  Bridge Pattern



 Bridge Pattern



 Operations: Command Pattern



  Command Pattern (invoke)



  Command Pattern: undo/redo



 Iterator Pattern



  Traversal vs. Traversal Actions 



  Visitor Pattern
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