
Design Patterns

Observer / Template Methods

Hans Vangheluwe and Alexandre Denault

Example

The I.T. systems for the Olympics are complex and
represent a software architecture challenge.
Information about the events, such as the detailed
scheduling, competitors and results are all stored on a
centralized system.
This information must then distributed to various
subsystems (views), each used by a different category of
people.

Information Distribution

Scheduling
Participant

Profiles Results

Organizers

Judges

Athletes

Spectators

Press

Information Distribution

Scheduling
Participant

Profiles Results

Organizers

Judges

Athletes

Spectators

W

R W

R W R

R R

Press R R R

Data Source and Subsystems

Centralized Data Source

Participant
Profiles

Scheduling

Results

Event Website

Athlete Intranet

Press Intranet

Judges Intranet

Organizers
Scheduler

?

Event WebsiteEvent WebsiteEvent WebsiteEvent Website

Concerns

Such a system must
ensure consistency between different views

be efficient (it will have to deal with a high load)

the subsystems cannot continuously poll the data source for content.

Should be event-based: “when change, keep overall consistency by
propagation”

the data source cannot push all the content to the subsystems.

Observer Pattern

The Observer Pattern defines an one-to-many dependency
between objects so that when one object changes state, all
its dependents are notified and updated automatically.

Also known as: Dependents, Publish/Subscribe
Part of Model/View/Controller (MVC)

Classic Example

Motivation

The main motivation behind the Observer Pattern is the
desire to maintain consistency between related objects
without making them tightly coupled.
In our spreadsheet example, we don't want the different
representations to be coupled with each other.
However, if the information changes in the spreadsheet, all
the different representations should be updated to maintain
consistency.

Participants

Actions

attach/subscribe: observer “registers” with subject
detach/unsubscribe: let observer no longer observe subject
notify : subject method called when subject state changes
update : inform an observer that new data is available

getState : get subject state after notify (pull method)
update with data argument :
send data to observers (push method)

Sequence Diagram (Pull)

Sequence Diagram (Push)

Applicability

Abstraction has multiple aspects/views, each independent
Separation allows independent modification/re-use

Unknown number of observers
 may change dynamically

No assumptions made about observers
except for presence of update()

Consequences

 Minimal coupling between Subject and Observer.
The subject does not require knowledge of the observer.

The observer only needs to know how to get new data.

 Support for broadcast communication.
An update() triggers a broadcast communication across all observers.

 Unexpected updates.
The subject is blind to its observer. Thus, the cost of an update() is
unknown.

Observers have no control over when they will receive updates.

Implementation Concerns

The Observer pattern has numerous alternative variants:

Push vs. Pull

Observing more than one subject.

Who stores the subscription?

Who triggers update?

Deleting subjects and observers?

Subject's self-consistency

Complex subscriptions

Observer/Subject combo

Push vs. Pull

What are the advantages, disadvantages?

Pull

In the pull model, observers are responsible for acquiring
the new state after an update() is called.
+ Better transparency, subject doesn't need to know about
observer.
+ Observer is free to determine whether it wants to acquire
the new state.
- Observer must determine what is new without help from
the subject.

Push

In the push model, information about the subject's state
change is sent in the update message.
+ Efficient: observer does need to determine what was
updated.
- Requires the subject to know more about the observer
(breaks abstraction).
- Observer always automatically receives the update,
whether it wants it or not.

Observing more that one subject

In some situations, it might make sense that an observer be
attached to more than one subject.
Our current infrastructure is very poor for this.
We don't know which of the observed subjects called the update
method.

How can we fix this?

Who stores the subscriptions?

In a traditional Observer Pattern, the subject manages the
collection of observers (subscribers).
This adds overhead to that class:
Clutters the API.

Forces it to deal with attach/detach method calls.

In a system with a low number of subscriptions, this is not a problem.

However, this is a burden to the subject if there are many
subscriptions.

Solution?

Subscription Manager

Notify()

Who can/should trigger notify?
When do we call a notify?

Who triggers notify?

safety vs. performance tradeoff.
Safety: after every setState(), notify() is called (and hence
update() messages are sent).
+This ensures a consistent state at all times.

- It's very expensive when there are many setState() calls.

Performance: we do a nofity() after having completed an
appropriate number of setState() calls.
+ We don't flood the system with update() calls (performance).

- There is a danger of having inconsistencies.

- There is a danger that the call to notify() is forgotten.

Deleting the Subject

If a subject is deleted, what should happen to its observers?

Deleting the Subject

We could delete the observers, but ...
■ Other objects might refer to those observers.
■ The observers might be attached to other subjects.

Subject should notify the observers before its destruction?

Deleting the Observer

If an observer is deleted, what should happen to its subject?

Deleting the Observer

detach() the observer before deleting it
(in observer's destructor)

Observer / Subject

An object could be both a subject and an observer.
In our example, OS is an observer and a subject.

What happens when OS calls S.getState()?

Most likely it will update its state, triggering a notify() and
subsequently an update() call to O3.

What happens if S observes O3? We would get a loop.

If an object can be both an observer and a subject, we need to deal
with (detect/handle) loops. How?

S:

OS:

O1:

O2:

O3:

Specific Interest

As already mentioned, the subscription mechanisms could
be altered to deal with specific interests.
In other words, an observer could specify what part of the
state it is interested in.
In a game, register with a player object, but only wish to receive
updates about positions.

In an online investment application, register with the stock exchange
object, but only wish to receive updates about stocks trading for more
that 10$.

Trade-off: while the complete state does not need to be
sent, we have to keep track of what each observer wants.

Increased overhead

In the scenario where different observers have specific
interests, each observer must be tracked separately.
When the state of a subject is modified, each observer must
be checked.
Information sent to the observers depends on their individual
subscriptions.

In some cases, update() not even have to be called.

- This means we are no longer broadcasting information in a
generic fashion.
- Preparing and sending each of these updates is very time
consuming.

Self-consistency

Do you see a problem?

Self-consistency

Special care must be taken when extending the subject
object.
The trick is that every method must respect self-consistency
as a pre-condition and post-condition.
This means that before the state is changed, the system
should be consistent.
This also means that after the state is changed, the system
should also be consistent (or at least converge towards a
consistent state).
Instead of sub-classing, the template method design pattern
is much more secure (against inadvertedly introducing
inconsistency).

Template Method Pattern

Define the skeleton of an algorithm in an operation,
deferring some steps to subclasses.
Template methods refine certain steps of an algorithm
without changing an algorithm's structure.

Example

Every concrete class can
have its own primitive
operations; the template
calls these functions.

Concerns

The main challenge in template methods is making sure the
method is used properly.
Users need to know and understand which methods need to be
overridden and which method is the template.

Luckily, most OO programming have constructs that help us
out with this.
Abstract methods, final methods, etc.

One of the most important things to keep in mind is to
minimize the number of primitive operations.
Keeps things simple and easier to implement.

Solution to the Observer Problem

Template Method allows us to solve the self-consistency
problem.
The idea is that the setState() method should be a template
method with notify() as its last line.
Sub-classes can then vary the behaviour of the subject by
changing the primitive operations.

Model View Controller

Model View Controller (MVC) is an application architecture
that heavily depends on the observer pattern.

View

ControllerModel

MVC Explained

Model : The domain-specific representation of the
information on which the application operates.
View : Renders the model into a form suitable for
interaction, typically a user interface element.
Controller : Processes and responds to events, typically
user actions, and may invoke changes on the model.

MVC in action

Observer in MVC

View

ControllerModel

Observer Pattern

Publisher

Observer

Where is MVC used?

MVC is highly used in web application frameworks
Such as Struts, Spring, Django, Ruby on Rails, etc

Observer Pattern in Games

Most multi-player use a networking scheme that implements
the observer pattern ... or a slight variation of it.
In this architecture
Game objects (players, items, surroundings) are the subjects

Game clients are the observers.

Board Games

Implementation

Participants

In another popular game ...

Interest Management

In a massively multi-player distributed game, broadcasting
all state changes to every player of a game is not a viable
solution.
Interest management is a techniques that only sends
relevant state changes to each player.

Overhead ...

Who should see who?

A

B

C

DE

Radius

Tiles

Replication

The Observer pattern is heavily used in data replication.
In data replication, there exists one master copy of the data
and several replicas.
■ The master copy is considered the subject.
■ The replicas are observers, attached to this subject.
■ When the master copy is updated, so are the replicas.
■ If the master copy is lost, then one of the replicas becomes the new
subject.

Group Communication

The primitive operations in group communications are:
■ Join a group
■ Leave a group
■ Send a message to the group.

These primitive operations are very similar to those found in
the observer pattern.
■ Attach, detach, notify

It turns out that networked observer patterns are often
implemented using group communication protocols.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

