
Comp-304 : Object-Oriented Design

What does it mean to be Object Oriented?

What does it mean to be OO?

■ What are the characteristics of Object Oriented programs

(later: OO design) ?

■ What does Object Oriented programming add

(as opposed to structure programming?)

What does it mean to be OO?

1)Encapsulation

2)State Retention

3) Implementation / Information Hiding

4)Object Identity

5)Messages

6)Classes

7) Inheritance

8)Polymorphism

9)Genericity

Object Structured, Based, Oriented

 Exhibit 1 – 3, called object – structured

 Exhibit 1 – 4, called object – based

 Exhibit 1 – 7, called class – based

 Exhibit 1 – 9, called object – oriented

Case Study: Spread Sheet

Abstracted: Spread Sheet Grid

Let's design

■ What classes do we need?

■ What attributes should they have?

■ What methods should they have?

■ How should classes be related to other classes?

~ CRC (Class Responsibility Collaboration)

Encapsulation

■ Definition: grouping of related concepts into a single unit

referred to by a single name

■ Different levels of encapsulation:

 Level 0 : within a line of code

 Level 1 : multiple lines of code, procedure

 Level 2 : set of procedures, class

 Level 3a : set of classes of the same domain,

 Horizontal, package like or

 Level 3b : set of classes of different domains performing a

common job

 vertical, component like

So what is OO encapsulation?

 Object – Oriented (referred to as OO hereafter)

encapsulation is the grouping of methods and attributes

representing state, into an object so that the state is

accessible and modifiable via the interface provided by

the encapsulation

Encapsulation in Spread Sheet

■ Level 1 : Lines of code -> Actions

 Change cell value

 Add row

■ Level 2 : Actions + State -> Key objects :

 Cell referencing

 Create table

 Etc

■ Level 3 : Cell objects -> Active range

■ ... Level 4 ?

State retention

 The attributes of an object represent what it remembers.

 The state of an object is the set of current (“snapshot”)

values for those attributes.

 If an attribute changes, so does the state of the object.

 An object composed of 4 booleans has 16 possible states.

 An object composed of 2 integers has 18 446 744 073 709 551

616 possible states.

 State of an object may differ before and after a method

call.

 objects don't die after “execution”.

State in SpreadSheet

■ How many states can a cell have?

■ A cell has the following attributes:

 Coordinate : row + column

 Value : string, float

SpreadSheet

■ How do you store the position of a cell?

 (1..n, 1..m)

Information / Implementation

hiding

■ When observing an encapsulated entity, we can have

two points of view:

 From the outside (public view)

 From the inside (private view)

■ The advantages of a good encapsulation is the

separation of the private and public views.

■ To access elements in the private view, users must go

through the public interface.

 Use of encapsulation to restrict internal workings of software

from external user view

Cell: SpreadSheetData

■ How do I store the location of a cell?

 An integer ? N x M possible values (say 100 x 26)

 Row then column: 26 + 26 + 23 = 75 (C23)

 Column then row: 100 x 23 + 3 = 2303

 An integer couple ? (1,1), (3, 23)

 A character + integer ? “A1”, “C23”

 A hask-key ?

■ How do I hide this from the user?

 IsOnRow(i) : boolean

 IsOnColumn(i) : boolean

 GetRow() : int

 GetColumn() : int

Information vs. Implementation

Information Hiding

■ We restrict user from

seeing information

 variables, attributes, data,

etc.

■ To access information,

users must use a set of

public methods.

Implementation Hiding

■ We restrict user from

seeing implementation

 code, operations, methods,

etc.

■ Users can use the method

without knowledge of how

it works.

Why should we do this?

■ Designer and user must agree on some interface and

nothing else. They are independent. They do not need to

speak the same language

■ Software evolution is easier. Suppose user knows about

implementation and relies on it. Later, if the designer

changes the implementation, the software will break

■ Code re-use is easier

■ Abstraction from user is high, user need not worry about

how it works!

Get / Set Rule

■ Never allow other class to directly access your attribute.

■ Once an attribute is public, it can never be changed.

 Ex: img.pixeldData

■ Make your attributes available using get/set methods.

 self.row Bad!

 self.getRow() Good!

Point

■ Inside, cells could be using dictionnary or 2D-array.

 Dictionnaries are more efficient when dealing with sparse

sheets.

 2D-arrays are more efficient when dealing with dense sheets.

Network Engine Example

public interface NetworkClient {

public connect(String address);

public void send(Object obj);

public Object receive();

public void close();

}

■ This kind of network interface can be implemented using

multiple protocols.

■ The user doesn't even need to know which underlying

protocol is used.

Object Identity

■ Each object can be identified and treated as a distinct

entity.

■ Use unique names, labels, handles, references and / or

object identifiers to distinguish objects. This unique

identifier remains with the object for its whole life.

■ We cannot use objects' states to distinguish objects,

since two distinct objects may have the same state (i.e.,

same attribute values).

3897894

984323 4224534

678567

Distinct Identity

Memory Heap

reference:

cell1 : SSheetCell

value: “abc”

row: 1

col: 1

row: 3

col: 23

Mutable vs Immutable Objects

■ An Immutable object is an object that is created once and

is never changed.

 Type: String, Long, tuple, etc.

 Two Immutable objects are considered the same if they have

the same state.

■ A Mutable object is an object whose state can change.

 Vector, Array, etc.

 Two different Mutable objects are never considered the same

(different identity).

What does it mean to be Object

Oriented?

1)Encapsulated

2)State Retention

3) Implementation / Information Hiding

4)Object Identity

5)Messages

6)Classes

7) Inheritance

8)Polymorphism

9)Generacity

Messages (Calls)

 Sender object (o1) uses messages to demand target

object (o2) to apply one of o2's methods

 For o1 to send a meaningful message to o2, it must

adhere to some message structure

 o1 must know o2's unique identifier

 o1 must know name and signature of o2's method it wants to

call

 o1 must supply any arguments to o2 so that the method may

execute properly

 i.e. in Java, we write o2.method(args)

Messages (Calls) (cont.)

Messages (Calls) (cont.)

■ In “pre-OO” language, we might have written method(o2,

args). Note: Python's “syntactic sugar”

■ This doesn't allow polymorphism!

■ For o1's message to properly execute o2's method, o1

must

 know the signature of o2's method

 pass the proper arguments (inputs)

 know if the method will return any values (outputs) and be

ready to store them accordingly

Types of Messages

 Three types of messages:

 Informative: supplies target object with information to update its

attribute(s)

[Past-oriented: Forward, Push]

 Interrogative: asks target object to supply information about it's

attribute(s)

[Present-oriented: Backward, Pull]

 Imperative: tells target object to do some action

[Future-oriented: Force]

Informative, Interrogative or Imperative ?

■ cell1.getValue()

■ cellVal.isFloat() ?

■ ssheet.insertRow(5)

■ cell2.setValue(5)

■ ssheet.addRow()

■ cell.isEmpty() ?

■ cellVal.computeFormula()

Synchronous vs Asynchronous

Synchronous Messaging

■ An object receiving a

request executes it

immediately and returns

the result. 1 thread of ctrl.

Asynchronous Messaging

■ A object receiving a

request acknowledges it.

■ The request is executed

later and the return value

is eventually returned

(often through the use of a

call-back method)

Classes

■ A class is the stencil from which objects are created

(instantiated).

■ Each object has the same structure and behaviour as the

class from which it is instantiated.

 same attributes (same name and types)

 same methods (same name and signature)

 If object obj belongs to class C (intention: classification)

 then obj is an instance of C.

 So, how do we tell objects apart?

 Object Identity

Instantiation

Classes vs Objects

■ Classes are static and are evaluated at compile time.

 Only one copy of the class exist.

 Memory to store methods is only allocated once.

■ Objects are dynamic and are created at run time.

 One copy of the object is created every time the object is

instantiated

 Thus, memory to store the attributes (“state”) is allocated for

every instantiated object.

Inheritance

■ Suppose you have classes C1 and C2. At design time,

you notice that everything in C1 (attributes and methods)

should also be in C2, plus some extra attributes/methods.

■ Instead of rewriting all of C1's code into C2, we let C2

inherit from C1.

■ Thus, C2 has defined on itself (implicitly) all the attributes

and methods of C1, as if the attributes and methods had

been defined in C2 itself.

Relationship

■ Inheritance should be an “is a” relationship

■ Suppose we have a class MotorVehicle

 An Automobile is a MotorVehicle

 A Motorcycle is a MotorVehicle

■ We call MotorVehicle the superclass and Automobile is a

subclass

 MotorVehicle is more general(ized)

 Automobile is more specialized

Specialization

Multiple Inheritance

■ Many classes can inherit from one class

■ One class can inherit from many classes

 Why is this good ?

 Why is this bad?

The Good

■ Allows code reuse

 code in superclasses doesn't have to be rewritten in subclasses

■ Ease of maintenance

 if we add an attribute to a superclass, all subclasses will

automatically inherit it

The Bad

■ If one class can inherit

from many classes, we

may get multiple

inheritance

■ Which x should C3 inherit,

the one from C1 or the

one from C2?

■ How can this be taken

care of?

C1

x:int

int m()

C2

x:int

int n()

C3

c3=C3()

c3.x ?

c3.m() ?

c3.n() ?

The Not So Bad

■ If many classes can

inherit from one class, we

may get repeated

inheritance

■ C1 and C2 inherit x from

C0. Now, they are all the

“same” x, but which x

does C3 inherit?

C1

x:int

...

C2

x:int

...

C3

x:int

...

C0

x:int

...

c3=C3()

c3.x ?

Polymorphism

Polymorphism == “many forms” in Greek

■ A single method (or attribute) defined on more than one

class that may take on different implementations in each

different class

■ An attribute or variable that may refer to objects of

different classes at different times during program

execution

Example of Polymorphism

Super-class

Sub-classes

Polymorphism

■ Method format() demonstrates polymorphism

■ When we call someObject.format(), the object which is

being referenced will know how to show itself

■ It must be ensured that format() is properly implemented

for each subclass (and possibly the superclass) and that

the user need not worry about the implementation

Which show() to call?

■ Which format() to execute will

be determined at run-time

(and NOT at compile-time).

This is known as dynamic,

run-time or late binding

Object o

o = Object.new()

s = String.new()

t = Tuple.new()

...

if condition :

o = s

else :

o = t

...

o.format()

Example

■ At run-time, the object o may be an object of type String

or of type Tuple.

■ What o actually is will only be determined at run-time,

after the user's input.

■ When o.format() is executed, the method format() of the

appropriate object will be executed.

Overloading vs. Overriding

■ Overriding is the redefinition of a method defined on a

class C in one of C's subclasses.

 We say that the name or symbol is “overridden”.

■ Overloading of a name or symbol occurs when several

operations (or operators) defined on the same class have

that name or symbol.

 We say that the name or symbol is “overloaded”.

Example of Overriding/Overloading

Super-class

Sub-classes

Overriding

■ display() is an example of overriding as subclasses

Number, String and Tuple redefined display().

■ If we wish to actually execute setValue() of the

superclass (Object), we would execute super.display() in

the subclass.

In Python: SuperClass.display()

Overriding can also be used to cancel certain inherited

methods.

 Suppose we have a subclass Hash that cannot show itself, then

we can override display() in class Hash to return some error.

 This is BAD DESIGN!

Overloading

■ setValue(:string) is an example of overloading

 setValue(:float) will update the float attribute of the object

 setValue(:string) will update the string attribute of the object

■ Which method will be executed depends on which

method signature is used to call it.

Python ?

CellValue : format()

Super-class

Sub-classes

More tricky

■ If B and C are subclasses of A.

■ Class D has the following methods.

 m(B b)

 m(C c)

■ What happens if?

 A var = new B(); D d = new D();

 d.m(var)

■ Depends on the lookup:

 Lookup static : how to show A instance ?

 Lookup is dynamic : call to m(B b) is made

Genericity

■ Imagine we spend a lot of effort developing an algorithm

to sort integers.

■ I don't want to rebuild the algorithm if I store floats or

strings.

■ I want a generic algorithm for comparing items.

■ Solution : Genericity (also known as templates)

Definition

■ Genericity – one or more classes are used internally by

some class and are only supplied at run-time (or upon

instantiation)

■ Genericity can be emulated using inheritance, but ...

Example

#include <iostream>

using namespace std;

template <class T>

T GetMax (T a, T b) {

T result;

result = (a>b)? a : b;

return (result);

}

i

int main () {

int i=5, j=6, resInt;

long l=10, m=5, resLong;

string s1="hello", s2="abc", resString;

resInt = GetMax<int>(i,j);

resLong = GetMax<long>(l,m);

resString = GetMax<string>(s1,s2);

cout << resInt << endl;

cout << resLong << endl;

cout << resString << endl;

return 0;

}

Example

#include <iostream>

using namespace std;

template <class T>

class Pair {

T a, b;

public:

Pair (T first, T second)

{a=first; b=second;}

T getmax ();

};

template <class T>

T Pair<T>::getmax ()

{

T retval;

retval = a>b? a : b;

return retval;

}

int main () {

Pair<int> myIntPair(100, 75);

cout << myIntPair.getmax() << endl;

Pair<string> myStringPair ("hello", "ab");

cout << myStringPair.getmax() << endl;

return 0;

}

